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Abstract. Reverse logistics (RL) return prediction for Waste Electrical
and Electronic Equipment (WEEE) has gained attention due to its po-
tential to improve operational efficiency in the recycling industry. How-
ever, in data-scarce regions, commonly used deep learning models per-
form poorly. Existing multi-source cross-domain transfer learning mod-
els can partially overcome data scarcity by using historical data from
multiple sources. However, these models aggregate multi-source domain
data into a single-source domain in transfer, ignoring the differences in
time series features among source domains. Additionally, the lack of
historical data in the target domain makes fine-tuning the prediction
model inoperative. To address these issues, we propose Dual Transfer
Driven Multi-Source domain Adaptation (DT-MUSA) for WEEE RL re-
turn prediction. DT-MUSA includes a dual transfer model that combines
sample transfer and model transfer and a basic prediction model MU-
CAN (Multi-time Scale CNN-Attention Network). It employs a multi-
task learning to aggregate predictors from multiple regions and avoids
negative transfer learning. The dual transfer model enables fine-tuning
of the base model MUCAN by generating long-term time series data
through sample transfer. We applied DT-MUSA to real cases of an RL re-
cycling company and conducted extensive experiments. The results show
that DT-MUSA outperforms baseline prediction models significantly.
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1 Introduction

As reported by the United Nations University, only about 20% of the 44.7 mil-
lion tons of WEEE generated worldwide each year undergo proper recycling
and treatment [29,13]. If not properly treated promptly, the leaching of haz-
ardous substances from a large volume of WEEE can pose significant risks to
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the environment and human health [30,32,7]. The use of RL return data pre-
diction can enhance the efficiency of WEEE RL by supporting transportation
scheduling, labor and material scheduling, and production planning for reverse
recycling efforts [4,25,14]. Therefore, the RL return prediction of WEEE has
received widespread attention [16,11].

[15] and [38] earlier investigated RL return prediction based on regression
equations. A Bayesian-based prediction model developed by [34] assumed that
RL flows obey a binomial probability distribution. [23] modeled RL return pre-
diction by analytical moving averages, exponential smoothing, and causal analy-
sis. These studies considered the time-series relationship of the data and achieved
good results under certain applicable conditions. However, the models are ex-
tremely dependent on feature selection, and different modeling is required for
different application scenarios, leading to difficulties in applying to complex sce-
narios. To be able to build an RL prediction model with generalization ability,
[40] recently proposed a deep learning-based multi-time scale attention network
(MULAN). By dividing the closeness window, period window, and trend window
in the historical data as model inputs, this approach is able to capture various
features at different time scales of the series. As a result, there is a significant
improvement in the accuracy of the prediction. However, the prediction accuracy
of MULAN is severely degraded in some scenarios lacking long-term history data
(see Section 5.1), because historical data are scarce and trend window inputs are
not available.

To improve model performance in historical data lacking scenarios, researchers
proposed transfer learning that learns knowledge from selected sufficient data
related to the target domain with sparse samples [26,5,12]. However, in RL pre-
diction scenarios, the distribution of source and target domain data may differ
significantly due to geographical and temporal differences, leading to severe neg-
ative transfer [39,28]. Many recent studies have tried to employ multi-source
data adaptive transfer learning in the expectation that pre-trained networks can
extract richer sets of common features in multiple source domains and overcome
the differences in data distribution from source to target domains [10,6]. These
methods can be used to predict RL return data in the data-lacking scenario, but
there are still two challenges.

The first challenge is how to utilize multi-source data effectively to mitigate
negative transfer. In a multi-source knowledge transfer learning task, the distri-
bution of data in each source domain varies, and therefore, their contributions
to the target domain task should be adjusted accordingly, so a key issue is how
to adaptively aggregate the source domain predictors [33,3]. Traditional studies
generally assign weights to source domains or select source domains subjectively
and directly by domain similarity [17,9,1]. However, existing two-stage learning
methods (involving domain selection and model transfer) lack adaptive algo-
rithms capable of accurately quantifying the similarity between the source and
target domains in relation to the assigned weights.

The second challenge is the lack of long-term time series data leading to
suboptimal fine-tuning of model transfer, especially when the base prediction
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model for transfer needs to extract the features from multi-time scale windows.
That is because trend data cannot be used in this case, and the multi-time
window input structure does not have sufficient windows of data, leading to
suboptimal fine-tuning of the model transfer eg. MULAN [40].

To this end, we propose Dual Transfer Driven Multi-source Domain Adap-
tation (DT-MUSA). In DT-MUSA, (1) we first propose a multi-source domain
adaptation scheme based on multi-task learning to avoid the possible negative
transfer effects caused by subjective source domain predictors aggregation. We
compute the similarity between the data in the source and target domains and
prioritize the source domains for labeling. After that, we use a multi-task learn-
ing strategy to perform association learning on the data from source domains
and dynamically integrate the prediction loss of each source domain during pre-
training. The model can adaptively aggregate the source domain predictors dur-
ing multi-task association learning to minimize negative transfer by learning the
mutual base model parameters in the shared layer of all tasks. (2) We propose
a dual transfer model (model and sample transfer) and a base prediction model
MUCAN (Multi-time Scale CNN-Attention Network) to tackle the suboptimal
fine-tuning of the model transfer due to long-term time series data scarcity.
First, we employ a sample transfer strategy to generate long-term time series
data. Then, we build a specialized multi-scale time-series feature extraction net-
work, referred to as MUCAN, which is built upon the convolutional attention
module and utilizes a multi-time scale input window structure. This serves as
the foundation for our dual transfer prediction model. Finally, we use the pre-
trained network of the source domain set for model transfer, initialize the shared
layer parameters of MUCAN in the target domain, and then fine-tune the shared
layer parameters of the model to better adapt to the data distribution present
in the target domain.

In summary, our main contributions are as follows:

– We propose a novel approach to multi-source domain adaptation that uti-
lizes multi-task learning to acquire mutual knowledge from various source
domains. As far as we know, this is the first study to employ multi-task
learning to mitigate possible negative transfer effects in the field of RL time
series prediction.

– We propose a dual transfer model, where sample transfer is used to generate
long-term time series of the target domain, and model transfer is utilized to
effectively transfer mutual knowledge obtained from multiple source domains
in multi-source domain adaptation. In addition, we propose a base predic-
tion model MUCAN for model transfer, which relies on the convolutional
attention module to obtain the degree of influence of different time-scale en-
codings on prediction and has better results than other network structures
in encoding fusion.

– To evaluate the effectiveness of our model DT-MUSA, we apply it to a real-
world case involving an enterprise specializing in RL returns. Through ex-
tensive experiments and ablation experiments, we analyze the benefits of
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utilizing multi-task learning for multi-source knowledge fusion and utilizing
the dual transfer model.

2 Related works

To overcome the distributional disparity between source and target domain data
in transfer learning, and enhance the transfer effect. In the last decade, many
research results on domain adaptation in transfer learning have been published.
Shallow domain adaptation methods are typically used to establish a connection
between the source and target domains by either learning invariant features or
estimating the importance of instances from the source domain [20]. For example,
[22] used a modified Transfer Naive Bayes (TNB) as a prediction model. They
employed a similarity measure based on ranges to allocate weights to source
domain instances, and subsequently trained the prediction model using these
weighted instances. [24] proposed TCA+ to reduce the differences in the distri-
bution of features that make the source and target domains.

With the rising prevalence of deep neural networks, there has been an in-
creasing interest in investigating deep domain adaptation techniques. This type
of method utilizes an adaptive module embedded in the deep architecture to
minimize differences between the source and target domains. [35,19] proposed
the DDC (Deep Domain Confusion) method and DAN (Deep Adaptation Net-
work), respectively, which diminish the dissimilarity between source and target
domains by introducing an adaptive adaptation layer or an additional domain
confusion loss. Later, [21] extended DAN by proposing Joint Adaptation Net-
work (JAN), which further considers the joint probability distribution of features
and labels. [28] introduce a novel deep Transfer Learning based on Transformer
(TLT) model that utilizes a recurrent fine-tuning transfer learning approach dur-
ing the pre-training phase of knowledge transfer. The purpose is to prevent deep
learning models from overfitting the source data and reduce domain gap between
the source and target domains in transfer learning tasks.

Multi-source Domain Adaptation (MDA) is a powerful extension to Domain
Adaptation (DA) that can collect labeled data from multiple sources with dif-
ferent distributions. With the success of DA methods and the widespread use
of multi-source data, MDA has gained growing attention from both academia
and industry. [17] proposed TPTL based on TCA+ to automatically select the
two source items that have the closest match with the target domain distri-
bution. After that, the two prediction models are constructed separately, and
their predictions are combined to improve the prediction performance further.
A Multi-Source Adaptive Network (MSAN) based on multiple GAN architec-
tures [2] can effectively learn the bidirectional transfer between the source and
target domains, thus reducing the distribution differences. A joint feature space
is also introduced to guide the multi-level consistency constraint of all trans-
formations to maintain consistent domain patterns during the adaptive process
and simultaneously empower the recognition of unlabeled target samples. To ad-
dress the cross-project defect prediction task, [1] proposed 3SW-MSTL, which
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did exploratory work in three directions, namely, the number of source domains,
source domain instance weights, and multi-source data utilization scheme using
conditional distribution information.

These ideas still have room for improvement in the RL return prediction
task. When the data of the target domain is sparse, the data sparsity problem
can be alleviated by using data from multiple source domains. However, the
above model ignores mutual time series features among source domains in the
design of multi-source domain predictors aggregation, which can be affected by
negative transfer resulting in suboptimal performance. To this end, we propose
DT-MUSA to solve the RL return prediction task. The model DT-MUSA will
be introduced in the following section.

3 Methodology

3.1 Overview

Faced with the task of predicting RL return in the target domain, we are faced
with the following challenges: (1) Difficulty in the aggregation of multi-source
domain predictors leads to a negative transfer effect. Leveraging knowledge from
multiple sources can improve prediction accuracy. However, minimizing knowl-
edge conflicts and distribution differences between multiple source domains and
the target domain presents a significant challenge in domain adaptation, which
can adversely affect the transfer effect. What kind of source domain aggrega-
tion strategy can we adopt to avoid negative transfer effectively? (2) Long-term
data scarcity leads to suboptimal fine-tuning of model transfer. The multi-time-
window input structure is crucial to fully extract the regular features of the
RL return time series. However, the data scarcity in the target domain leads to
the lack of trend data input to the model, which makes the transfer ineffective.
How can we improve the neural network structure or refine the model inputs to
improve the model transfer effect?

To address the above challenges, we propose DT-MUSA as shown in Figure
1, which consists of a multi-source domain adaptation module multi-task learn-
ing based, and a dual transfer module based on the feature extraction network
MUCAN.

– Multi-source domain adaptation algorithm based on multi-task learning.

• Possible ways to select the appropriate source domain for domain adap-
tation: The source domains are given priority by estimating the similarity
between the data distribution of each source domain and that of the tar-
get domain. After that, the model is pre-trained on the source domains
within the priority threshold to overcome the distribution differences
between source and target domains.

• Multi-task learning based multi-source predictor aggregation: Pre-training
is performed in the source domain set using multi-task learning, with
knowledge shared among source domains. The model adaptively adjusts
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Fig. 1. Overall architecture of the DT-MUSA. Given m source domains with abundant
historical data and current target domain historical data for prediction of future RL in
the target domain, the DT-MUSA consists of a multi-source domain adaptation module
based on multi-task learning and a dual transfer module based on feature extraction
network MUCAN.

the weight distribution among the tasks to continuously learn the pub-
lic knowledge, which is updated and retained within the shared layer to
increase the amount of positive transfer knowledge.

– Dual transfer model based on feature extraction network MUCAN.

• The base model MUCAN for transfer learning: A multi-scale time-series
feature extraction network MUCAN is built specifically for RL regres-
sion prediction by combining a convolutional attention module and a
multi-time scale window structure. MUCAN can accommodate the effi-
cient transfer of source domain knowledge and the complete extraction
of target domain features in model transfer.

• Dual transfer algorithm combining sample transfer and model transfer:
The data in the target domain are set as the direction of sample trans-
fer, and the mapper is trained to fill the missing trend window data in
the target domain. Model transfer with fine-tuned parameters is sub-
sequently employed to complete the transfer of public knowledge and
enhance the model’s generalization ability.

3.2 Possible ways to select the appropriate source domain for

domain adaptation

The data features learned in the source domain can be effectively transferred
to the target domain when the sufficient distributional similarity between the
source and target domain data is satisfied. Otherwise, the source domain will
transfer more knowledge carrying negative effects to the target domain, which
will bring some adverse effects on transfer learning. Therefore, we introduce the
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domain similarity estimation algorithm to initially screen the source domains
with high similarity to the target to avoid negative transfer.

We introduced the Jensen-Shannon (JS) divergence based on the Kullback-
Leibler (KL) divergence as a measure of domain similarity estimation. The
smaller the JS divergence of the source and target domains, the greater the
similarity. The similarity is expressed as

KL (p||q) =
∑

p log
p

q
, (1)

JS(Px||Py) =
1

2
KL(Px||

Px + Py

2
) +

1

2
KL(Py||

Px + Py

2
). (2)

After calculating the similarity between the distribution of the target domain
Py and that of the source domain Px, we assign all source domains within the
source domain set X priority rank fxi

(fxi
≤ |X| , fxi

∈ Z+). The higher the
similarity between the source and the target domains, the smaller the value of
the corresponding source domain priority rank, when fxi

= 1 indicates that xi is
the source domain with the highest similarity. A reasonable parameter priority
threshold β is also determined, i.e., the subsequent pre-training of the model is
performed on the source domain xi(fxi

≤ β, xi ∈ X) only. We consider the data
distribution of source domains with priority rank below the threshold to be highly
similar to the target domain and use them as alternate source domains, thus
enhancing the proportion of positive transfer in the transfer learning process.

3.3 Multi-task learning based multi-source predictor aggregation

To make the model fully extract and aggregate the public knowledge of each
source domain when pre-training in the source domain set, we define pre-training
on different source domains as different tasks and use hard parameter sharing
to associate these tasks. By sharing knowledge, model components complement
each other and enhance the effectiveness of mining time series public features.

Figure 2 illustrates the architecture of the pre-training model utilizing multi-
task learning. Based on MUCAN (we will cover this in detail in section 3.4), we
will slightly change the model structure by using multiple decoders in parallel
to replace the original MLP network used for single-task decoding to obtain
Muti-MUCAN. Each decoder acts as a private module for different pre-training
tasks to independently decode the fusion codes extracted from the shared layer.
In the face of multiple decoding outputs of multiple tasks, the output results of
different tasks are calculated to obtain different loss magnitudes, and the task
with larger loss may dominate the model optimization direction. To overcome
this problem, we constitute the total loss by calculating the weighted loss of
different tasks as follows:

L(t) =
∑β

i=1
wi(t)Li(t) (3)

where t denotes the current training step number, and wi denotes the weight of
different task losses. For wi, we are not sure that we can manually set the weights
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Fig. 2. A pre-trained model utilizing multi-task learning.

quite appropriately, so it is wiser to choose a method that can dynamically adjust
the weights according to the learning effect of different tasks. Dynamic Weight
Average [18] reflects the learning difficulty by considering the rate of change of
each task’s loss and thus dynamically calculates the weights of the tasks.

wi(t) :=
S exp(ri(t− 1)/T )

∑β

i=1 exp(ri(t− 1)/T )
, ri(t− 1) =

Li(t− 1)

Li(t− 2)
(4)

ri(·) denotes the relative rate of decline of loss, S is used to limit the range
of variation of weights to satisfy

∑

i wi(t) = S, and T denotes the degree of
relaxation between individual tasks, if the larger the value, the more the weights
of each task tend to be equal.

3.4 The base model MUCAN for transfer learning

To solve the prediction task for regions with sparse samples, we introduced a con-
volutional attention module based on the structure of multi-time scale window
inputs [40] and built a feature extraction network MUCAN for the subsequent
transfer task. The extraction of features at different time scales of the series is
achieved to capture the dependence of WEEE at multiple time scales.

First, we label the closeness data window, period data window, and trend
data window in the historical data as cw, pw, and tw, respectively, and the size
of each window is clen, plen, and tlen. Based on the current time step s, the size
of each window in the historical data is defined as follows.

– Closeness window: cw = [s− clen, s)
– Period window: pw = [s− 30− plen

2 , s− 30 + plen

2 )
– Trend window: tw = [s− 365− tlen

2 , s− 365 + tlen
2 )

We extract cw, pw, and tw from the historical data as inputs to capture
the temporal dependence of sequences at multiple time scales. Then the three
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input features are encoded by the corresponding LSTM modules to mine the
correlation between the sequence adjacent data within each window to generate
three coded sequences with the same dimension cenc, penc, and tenc. We use the
convolutional attention module to weigh the three coded sequences for fusion
to obtain the fusion coding menc. Finally, the fusion coding is decoded by a
multilayer neural network as a regression layer to obtain the final prediction.
The structure of our designed network model is shown in Figure 3.

Fig. 3. Structure of feature extraction network MUCAN for model transfer.

The characteristics and design motivation of the MUCAN extraction layer
are described as follows:

First is the LSTM-based coding module. Due to the unique gating unit and
memory unit of LSTM, it avoids the gradient disappearance problem of RNN in
the training process of long sequences and is good at extracting long-term time
series features. We adopt LSTM as the encoding module for the input window
to extract the characteristic laws of sequences in trend, period, and closeness,
respectively. Our model encodes the window input data x at different time scales
by LSTM to obtain dimensionally consistent encoding sequence xenc.

xenc = LSTM(x) (5)

We generate 3 coding sequences: cenc, penc, and tenc, after inputting the window
data cw, pw, and tw into their respective LSTM modules.

Second is the convolutional attention module. In exploring the three depen-
dencies of sequences, we consider the mining of sequence trendiness and periodic
regularity features to act as a supporting role. To focus the model’s attention
more on the closeness window encoding sequences cenc, we use an additive atten-
tion mechanism [36] as part of the fusion encoding. Based on the prediction task
of the time series, we define the encoding of the closeness window cenc as a query
vector q and set the key values K = {cenc, penc, tenc}. The scoring function for
the additive attention mechanism is as follows:

si = s(ki, q) = εT tanh(Wkki +Wqq) (6)

where Wk, Wq, and ε are all learnable parameters. The attentional scoring si is
obtained by this formula, which is subsequently softmax to obtain the attention
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distribution αi. At this point we weight the coded input V = [cenc, penc, tenc]
with the attention distribution coefficients αi to obtain the output matt:

αi = softmax(si) =
exp(si)

∑len(K)
j=1 sj

(7)

matt =
∑3

i=1
αivi , vi ∈ V (8)

The annual trend, monthly period, and closeness law features on which the
WEEE data depend do not change easily. Considering the effectiveness of the
convolution operation in extracting spatio-temporal features, we use the con-
volution module as another part of the fusion coding, where the convolutional
kernel size of conv1 and conv2 is 3, the padding of conv1 is 1, and the padding
of conv2 is 0. The convolutional coding mconv is obtained as follows:

mconv = conv1(conv2(stack(v1, v2, v3)) (9)

After deriving the attentional and convolutional encoding, the two are concate-
nated together to obtain the fusion encoding menc.

menc = concat(matt,mconv) (10)

Finally, the decoding module. We use a multilayer neural network (MLP) to
decode the fusion code menc and output the predicted values for the next t days.
In addition, a dropout layer is added to the multilayer neural network to avoid
the overfitting phenomenon.

3.5 Dual transfer algorithm combining sample transfer and model

transfer

Since the target domain with missing historical data generally only provides
order data within the last three months, applying the model will result in missing
trend window input tw for the feature extraction network MUCAN. This means
that it will be difficult for MUCAN to model the trend, and the dependence of
the series on the trend time scale will not be explored.

To solve this problem, we first select the source domain x1(fx1
= 1) with the

highest priority in the source domain set and define the trending data domains
used in the source domain x and the target domain y as xtre and ytre, respec-
tively. We learn the mapping rules from the sample data in the source domain
x1 to the sample data in the target domain y by training a mapper (see Figure
4), and subsequently use xtre as the input to the mapper to generate the missing
trend data in the target domain ytre. To simplify the complexity of the overall
model, we use LSTM-MLP to learn the mapping rules for sample transfer.

After completing the trend window of the target domain, to minimize the
loss of public knowledge in the transfer learning process between the source
and target domains as much as possible, we set a lower learning rate for the
part of the convolutional attention layer and the part of the LSTM layer in the
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Fig. 4. Mapper structure for sample transfer.

network structure to achieve the effect of parameter fine-tuning while adapting
the parameters of the regression layer to the distribution of the target domain
data by retraining.

4 Experiment setup

To assess the model performance, we conducted several experiments, including
overall performance comparison, ablation experiments, and sensitivity analysis.
In this section, we will provide details on the datasets utilized in the experi-
ments, the selection of baseline methods, evaluation metrics, and other relevant
experimental details.

4.1 Dataset

The commercial company Able Green provided the dataset used to test the
model’s predictive performance. From the company’s WEEE recycling service
order data for the last two years, two types of time-series data are available
from 28 Chinese provinces: air conditioners (AC) and washing machines (WM).
Some provinces are late to start recycling services and are missing long-term
data, and our experiments will focus on predicting two types of data for AC
and WM in such provinces. Detailed statistical data is shown in Table 1, where
we distinguish the provinces with scarce data from those with sufficient data
according to the earliest correct order time in each province and divide them
into the training, validation, and test sets according to 7:1.5:1.5.

4.2 Baselines

– ARIMA [31]: A method combines an autoregressive (AR) model with a mov-
ing average (MA) model and a differential preprocessing step of the series
to smooth the series.
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Table 1. The statistics of datasets

Domain Types Provinces covered Period begin Period end

Source
AC 25 1/1/2018 12/31/2019

WM 25 1/1/2018 12/31/2019

Target
AC 3 8/30/2019 12/31/2019

WM 3 8/30/2019 12/31/2019

– LSTM [8]: A special type of RNN with special gated memory units that are
good at extracting long-term time series features.

– Autoformer [37]: Based on Transformer, a model that enables efficient con-
nection at the sequence level for better information aggregation.

– Informer [41]: Based on Transformer, a sparse attention mechanism is incor-
porated to reduce the network complexity.

– MULAN [40]: The model introduces multi-time scale windows and attention-
based alignment fusion, which can capture the temporal dependence of se-
quences at multiple timescales.

4.3 Evaluation metrics

To evaluate the performance of DT-MUSA and other models, we need to use
appropriate evaluation metrics to measure the prediction accuracy of the corre-
sponding algorithms. MAE and RMSE are the evaluation metrics employed in
this study to assess the model’s prediction performance. Lower values of these
metrics indicate better performance by the model. The MAE and RMSE can be
calculated as follows:

MAE =
1

t

t
∑

i=1

|prei − trui|, (11)

RMSE =

√

√

√

√

1

t

t
∑

i=1

(prei − trui)
2

(12)

where t denotes the step size that the model will predict, and prei and trui

denote the predicted and true values of the day, respectively.

4.4 Experimental details

By grid search, we set the three input window lengths clen, plen, and tlen of
the feature extraction network MUCAN to 15, 10, and 20, respectively, and de-
termined β = 3, lr = 0.001 and epoch = 50 rounds in the source domain and
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lr = 0.01 and epoch = 100 rounds in the target domain. The best-performing
model on the validation set was retained, and all RMSEs and MAEs were calcu-
lated on the test set. All experiments were performed in the PyTorch framework
[27].

5 Results and analyses

5.1 Predictive performance comparison

To demonstrate the superiority of DT-MUSA in solving the task of predicting
RL return data in regions with sparse samples, we compare the results with
other commonly used prediction models as shown in Table 2 and 3.

Table 2. Overal performance comparison (MAE) on the AC and WM datasets.

MAE
Jiangsu Province Chongqing City Peking City

AC WM AC WM AC WM

ARIMA 25.659 16.888 1.360 4.103 0.652 1.032

LSTM 30.344 25.231 4.311 6.364 1.366 3.215

Informer 27.926 18.480 3.379 7.099 1.182 1.863

Autoformer 24.264 19.826 2.852 3.976 1.366 3.215

MULAN 20.386 8.854 1.838 3.637 1.508 1.505

MUCAN 9.373 12.586 0.736 1.675 0.307 0.719

MUCAN-sbs∗ 5.432 8.268 0.589 1.826 0.238 0.682

MUCAN-rt∗ 17.283 15.383 1.116 2.926 0.422 0.823

DT-MUSA∗ 2.775 3.471 0.233 1.436 0.098 0.310

Notes: The models with ∗ in Tables 2 and 3 indicate the transfer learning models, while
the rest indicate the non-transfer models. Bold in Table 2 indicates the minimum value
of MAE obtained for all models involved in the comparison in the corresponding data
set; the sliding line represents the minimum value of MAE obtained for the non-transfer
learning models involved in the comparison.

Under the condition of no transfer, the models are highly susceptible to
underfitting because the short-term data are difficult to meet the training re-
quirements of most deep learning models. The comparison of the transfer-free
methods in Tables 2 and 3 shows that various classical prediction models per-
form unsatisfactorily and are poorly adapted to the prediction task in regions
with sparse samples. One of the statistical methods, ARIMA, achieves a rela-
tively good result but is still objectively less than ideal. The feature extraction
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Table 3. Overal performance comparison (RMSE) on the AC and WM datasets.

RMSE
Jiangsu Province Chongqing City Peking City

AC WM AC WM AC WM

ARIMA 26.939 17.307 1.445 4.232 0.782 1.155

LSTM 27.753 21.755 3.571 2.939 1.573 3.879

Informer 30.278 20.288 2.962 3.092 1.279 2.379

Autoformer 28.738 20.896 3.725 5.527 0.942 2.072

MULAN 25.393 11.665 2.476 7.379 0.805 0.644

MUCAN 10.981 15.869 0.861 2.333 0.356 0.929

MUCAN-sbs∗ 8.327 9.236 0.627 1.923 0.188 0.572

MUCAN-rt∗ 20.238 13.378 1.630 4.132 0.283 0.592

DT-MUSA∗ 4.801 4.610 0.327 1.553 0.112 0.418

NotesNotes: Bold in Table 3 indicates the lowest RMSE value achieved across all models
involved in the comparison in the corresponding data set; the sliding line represents
the lowest value of RMSE obtained for the non-transfer learning models involved in
the comparison.

network MUCAN achieves excellent results in the target domain by capturing
the correlation patterns of the series on various time scales. However, due to the
lack of sample data, the dependencies of sequences on various time scales cannot
be explored more fully, resulting in the inability to predict some inflection points
in the prediction task accurately.

When a large amount of source domain data is available for transfer, we com-
pare DT-MUSA with some simple source domain selection strategies. As shown
in Tables 2 and 3 for the comparison of transfer methods, DT-MUSA performs
significantly better than single source domain transfer as well as random source
domain transfer for the target domain prediction task. This demonstrates that a
simple source domain selection strategy may introduce unsuitable source domain
data, leading to negative transfer. Compared with MUCAN without transfer,
DT-MUSA also has significant performance improvement. This proves that DT-
MUSA not only overcomes the distribution difference between the source domain
data and the target domain data to a certain extent but also solves the nega-
tive impact due to the missing data of the target domain. Overall, DT-MUSA
performs adaptive aggregation of predictors from multiple source domains, ef-
fectively reducing negative transfer.

5.2 Strength and weakness

Comparing the baselines in the table, our advantages are as follows:
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– Pre-training in the source domain set by multi-task learning aggregates the
common knowledge of multiple source domains to transfer to the target
domain, which avoids negative transfer to a certain extent.

– For WEEE return data, we build a feature extraction network MUCAN
based on the convolutional attention module, which fully explores the de-
pendencies of sequences at multiple time scales and helps to obtain more
accurate prediction results in transfer learning.

– Sample transfer is used to complement the trend window data input of MU-
CAN on the target domain to expand the range of explorable time-scale
categories and enhance the effect of model transfer.

In terms of model shortcomings: our model initially screens the source do-
mains by estimating the similarity between the data of each source domain as a
whole and the data of the target domain and thus divides the priorities to initially
screen the source domains in the expectation of reducing the data distribution
differences from the source to the target domains. However, the instance adaptive
approach has its limitations in the end, and the distribution differences between
the source and target domains will not be completely eliminated. Suppose the
deep feature adaptive approach is further explored, and the embedding of an
adaptive module to encode the mapping of source domain data is considered. In
that case, reducing the negative transfer phenomenon leads to an improvement
in model prediction accuracy.

5.3 Ablation experiments

In our experiments, (1) we introduced a model transfer approach to pre-train
the model with shared parameters in the multi-source domain, followed by fine-
tuning in the target domain; (2) we transferred data from the rich data domain
to the poor data domain by mapping the model, which complements the trend
window data input of MUCAN; (3) we built a feature extraction network MU-
CAN based on the Convolutional Attention Module for weighted fusing data
from different time scales for decoding output. We designed the following ab-
lation experiments to demonstrate the usefulness of each of the above three
components.

– Validate the effect of fine-tuning.
• DT-MUSA-ft: Remove the fine-tuning in the target domain, and apply
the pre-trained model directly to the target domain.

– Validate the effect of sample transfer.
• DT-MUSA-st: The closeness window data of the target domain is used
to fill the trend window data of the target domain.

– Verify the effect of Convolutional Attention Module on data fusion at differ-
ent time scales
• DT-MUSA-at: Remove the Attention Module and use CNN-LSTM for
training.

• DT-MUSA-ac: Remove the Attention and CNN Modules, and use LSTM
for training.
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Fig. 5. The effect of each part on model performance.

From the experimental results in Figure 5, it can be seen that these three
components play an extremely important role in the excellent overall model re-
sults. (1) The model transfer based on the pre-training fine-tuning approach con-
tributes significantly to the overall model performance. While the pre-training
model is effective at extracting complex temporal feature information in data-
rich domains, it can only provide a rough reflection of the trend characteristics of
the data when carrying the public knowledge from the source domain. Without
fine-tuning, it cannot make accurate predictions due to its neglect of the dis-
tributional differences between the target and source domain data. (2) Sample
transfer based on a mapper trained on a rich set of samples is essential in this
model. Previously, MULAN [40] has demonstrated that the window design based
on trending scales can effectively improve prediction accuracy. Due to the lack
of trend window data in the target domain, we complemented the trend window
data input in the poor data domain by the LSTM-MLP based mapping model
and achieved good results. (3) The embedding of the convolutional attention
module is also shown to effectively improve the model’s prediction performance,
especially in scenarios with transfer learning, allowing the model to gain more
room for improvement.

5.4 Model sensitivity analysis

The priority rank associated with the domain similarity size is introduced in
the source domain set used for the model transfer. The model is pre-trained
for multi-task association learning using only multiple source domains within
the priority threshold β. Our model should be robust to moderate changes in β

of the source domain set. To this end, we conducted sensitivity experiments to
verify that the model performs consistently over various variations in the source
domain set priority threshold parameter. When β = 1, the model degenerates to
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single source domain transfer, so we make β vary in the integer interval [2 : 7] and
compare the model predictions with the results of the transfer models (β = 3)
in Section 5.1.

Fig. 6. The effect of changes in the source domain priority threshold β on model
performance.

The comparison results are shown in Figure 6, where (AC/WM)-sbs indi-
cates the experimental results of the best single-source domain transfer on the
air conditioner or washing machine dataset; (AC/WM)-rt indicates the random
source domain transfer results; (AC/WM)-mt indicates the prediction results of
MUCAN without transfer, and the bubble size of (AC/WM) type corresponds
to the number of source domains used by DT-MUSA. It is easy to see that
DT-MUSA effectively improves the accuracy of the RL prediction task, and the
model’s prediction performance fluctuates within an acceptable range. And the
model generally outperforms other source domain adaptation strategies overall
within a certain variation of the priority threshold β. This demonstrates that
our model’s performance is stable and less affected by variations in the priority
threshold parameter.

6 Discussion and conclusion

In this paper, we have extensively investigated the predictive effectiveness of
various excellent models in the presence of sparse RL return data for WEEE.
For multi-source domain adaptive models, we point out the challenges of their
current application in practical scenarios: inefficient use of multi-source data
in multi-source knowledge transfer learning tasks; lack of long-term time-series
data leading to suboptimal fine-tuning of model transfer.

We thus propose DT-MUSA to address the above challenges. We first try
to use multi-task learning in the pre-training of multiple source domains, which
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effectively resolves the knowledge conflicts among source domains and dramati-
cally helps the fusion of source domain public knowledge. To overcome the ad-
verse effects of long-term data scarcity, DT-MUSA performs model transfer from
multiple source domains to target domains based on MUCAN neural networks
and complements the input data of trend windows by training mappers.

DT-MUSA focuses on the WEEE prediction task for certain provinces with
late start-up recycling services, where order information is typically only col-
lected for the past three months. We applied the model to a real Able Green
recycling business case and conducted a full experiment. The results show that
the model significantly improves the prediction accuracy on prediction tasks in
the target domain and is robust to critical parameters, showing that our model
is practical and feasible in real-world applications.

In this study, the method of similarity estimation to screen the source do-
main cannot completely overcome the difference in the distribution of source
and target domains. Adding an adaptive layer to the network model structure
of the source and target domains may improve the transfer effect. Besides, there
may be connections between the recycling data of different kinds of WEEE, and
using these connections to build a multi-task learning model may achieve better
prediction results.
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