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A B S T R A C T

Dempster–Shafer (D–S) evidence theory is useful in the realm of multi-source data fusion. However, a
counterintuitive result may be obtained when the belief probability assignments (BPAs) are highly conflicting.
To overcome this flaw, in this paper a symmetric fractal-based belief Kullback–Leibler divergence (FBDSKL)
is proposed. It is used to measure the divergence between BPAs, and is more capable than the existing
belief divergence methods in measuring the conflict between two BPAs in numerical examples. Furthermore,
the proposed FBDSKL is proved to have desirable properties including nonnegativity, nondegeneracy and
symmetry. To apply FBDSKL divergence measure to practical problems, a novel FBDSKL-based multi-
source data fusion (FBDSKL-MSDF) algorithm is designed. Through comparisons with the well-known related
methods, the proposed FBDSKL-MSDF algorithm is validated to be superior and more robust. Finally, the
proposed FBDSKL-MSDF is applied to two real-world classification problems to verify its high practicability.

1. Introduction

Multi-source data fusion is a technique for combining informa-
tion and generating an eventual decision target in real-world appli-
cations (Li et al., 2021). One of the most challenging issues is how
to handle the highly conflicting multi-source data. To be specific, due
to the ambiguity, inconsistency or even incorrectness of the multi-
source data, it is of great importance that the degree of confidence of
data given by every source should be quantified (Yager, 2021), so the
inappropriate data are confidence-weaken or close to be ignored. In
the field of multi-source data fusion, there have been many renowned
theories to model and handle different types of uncertainties, including
fuzzy set (Tao et al., 2021), D numbers (Lai and Liao, 2021) and
probability distribution (Wu et al., 2022). Furthermore, these theories
have been widely applied in various realms, such as representation
learning (Fujita and Ko, 2020), medical diagnosis (Lai and Cheong,
2020; Cao et al., 2019), fault diagnosis (Meng et al., 2022), dynamics
analysis (Wang et al., 2022b,a), velocity measurement (Wei et al.,
2021), graph clustering (Chu et al., 2022), classification (Miao et al.,
2023), group decision making (Fu et al., 2022; Zhou et al., 2022; Mao
et al., 2020), and others (Wang et al., 2023).

One of the fundamental theory basis of multi-source data fusion
is Dempster–Shafer (D–S) evidence theory (Dempster, 1967; Shafer,
1976). The main advantages of D–S evidence theory are that it can
quantify the belief value of both single targets and unions of ob-
jects. In addition, D–S evidence theory conducts uncertainty reasoning
through the Dempster combination rule in a flexible and effective
way without the need for prior information. Because of the effective-
ness and flexibility in modeling uncertainty, D–S evidence theory has
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widespread applications in various realms of information fusion, such
as EEG data analysis (Zhu et al., 2022), decision making (Liu et al.,
2020b), rescuer assignments (Fei and Wang, 2022a), social network
analysis (Ni et al., 2021) and risk evaluation (Liu et al., 2022; Chen
and Deng, 2022), output control (Chang et al., 2022), prediction of
emergency (Fei and Wang, 2022b), pattern classification (Xiao et al.,
2022a; Liu et al., 2020a; Xu et al., 2020), cardiac interbeat interval time
series analysis (Cui et al., 2022) and database retrieval (Yager et al.,
2019).

However, the open issue in Dempster’s method is that it cannot han-
dle highly conflicting BPAs and may generate counterintuitive results.
To address this problem, there are many related methods proposed
to measure the uncertainty and handle those conflicting BPAs. To be
specific, one of the existing related works for this purpose is Murphy’s
approach (Murphy, 2000), which implements a numeric-average pre-
processing to the BPAs. Then, Deng et al. (2004) propose a distance
matrix to estimate the supporting degrees between given BPAs. Except
for these methods, Shang et al. (2022) put forward an autoencoder-K-
Means approach to calculate the compound credibility for conflicting
BPAs; Xiong et al. (2021) take another view by modeling networks
to combine the conflict evidence. Furthermore, some researchers ad-
dress this issue from another perspective of belief divergence (Xiao
et al., 2022b; Xiao, 2022a). For example, Xiao (2019) proposes a belief
Jensen–Shannon (BJS) measure based on the Jensen–Shannon (JS)
divergence.

In these many uncertainty measurement methods, belief divergence
indicates a novel and promising orientation in information fusion.
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Therefore, in this paper, the main focus is to conduct research on belief
divergence to address multi-source fusion problems. By conducting
thorough research on the existing belief divergence methods, it is
found that in some cases, these belief divergence methods may yield
counterintuitive results, and details will be discussed in Section 2.2.2.
Furthermore, these counterintuitive divergence values may exert an
influence on the results of algorithm applications such as pattern recog-
nition and classification. Thus, how to construct a belief divergence
model is still an open issue. In this paper, to address this issue, a novel
belief divergence measurement method is proposed to handle these
problems to benefit information fusion.

It is well known that self-similarity is a prominent property of fractal
theory. To be specific, the integral objects on the macro level, however,
are made of similar parts. There are some fractal-based methods in
the uncertainty measurement, such as probability transformation (Chen
et al., 2021), information volume (Deng, 2020a; Zhou and Deng, 2022)
and information dimension (Qiang et al., 2022). Fractal methods can
measure the overlapping degree between events in the processing of
uncertain information (Deng and Cui, 2021). It is noticed that the
subsets in different BPAs may be partially supported. Therefore, in the
proposed divergence measurement, a fractal process is implemented to
transform the BPAs into their fractal forms. The fractal-transformed
BPAs show the intrinsic similarities between the original BPAs more
intuitively. Inspired by information volume and its extensions (Deng,
2020a; Zhou and Deng, 2022), a novel symmetric fractal-based belief
KL divergence, also called FBDSKL, is proposed to appropriately mea-
sure the conflict between BPAs. The following is a list of the study’s
main contributions:

• The newly defined FBDSKL method has certain benefits owing to
its four proved desirable properties, and it provides a more con-
vincing measure solution to quantify the conflict degrees between
mutual evidence functions.
• Based on the newly defined FBDSKL, a novel FBDSKL-based
multi-source data fusion (FBDSKL-MSDF) algorithm is proposed.
• FBDSKL-MSDF is conducted with a numeric experiment and ap-
plied in two classification problems and reveals high recognition
accuracy and strong robustness.

The remaining contexts are organized as follows. Section 2 summa-
rizes the preliminaries of evidence theory and existing related methods
in the realm. In Section 3, a fractal-based belief Kullback–Leibler diver-
gence measure is proposed. In Section 4, based on the FBDSKL, a novel
algorithm for multi-source data fusion (FBDSKL-MSDF) is proposed. In
Section 5, experiments of multi-source data fusion on target recognition
and a sensitivity analysis are conducted to verify the superiority and
robustness of FBDSKL-MSDF. In Section 6, application comparisons
with the well-known existing methods are respectively implemented.
Finally, in Section 7, conclusions of this research are drawn.

2. Preliminaries

2.1. Dempster–Shafer evidence theory

D–S evidence theory, as a generalization of Bayes probability the-
ory, is a great tool for dealing with ambiguous data (Dempster, 1967;
Shafer, 1976), so that it has been extended to theories including ran-
dom permutation set (Deng, 2022; Deng and Deng, 2022), evidence
reasoning (Tang et al., 2021; Huang et al., 2023; Zhang and Xiao,
2022), generalized quantum evidence theory (Xiao, 2022b; Xiao and
Pedrycz, 2022), etc.

Definition 2.1 (Frame of Discernment). Let � be a set of events which
are mutually exclusive and collectively exhaustive. Thus we have

� = {H1,H2,… ,Hk,… ,Hn}, (1)

which is defined as a frame of discernment.

Comprised with all the subsets in �, The power set of �, denoted
as 2�, is defined as

2� = {∅, {H1},
{
H2

}
,… ,

{
Hn

}
, {H1,H2},… , {H1,H2,… ,Hk},… , �},

(2)

where ∅ stands for an empty set. It is obvious that the number of
subsets in 2� is 2n (Song and Deng, 2021).

If A ∈ 2�, then A is called a hypothesis.

Definition 2.2 (Mass Function). In the frame of discernment �, a mass
function from 2�, denoted by m, is defined as:

m ∶ 2
�
→ [0, 1], (3)

which also satisfies the following conditions:
∑
A∈2�

m(A) = 1 and m(∅) = 0, (4)

where m(A) quantifies the belief value of hypothesis A. In D–S theory,
a mass function m is also named a BPA. If m(A) > 0, A is called a focal
element. Because BPA is effective to express uncertainty, it has been
well studied (Li et al., 2022; Deng, 2020b; Zhou et al., 2023).

Definition 2.3 (Dempster’s Rule of Combination). Let m1 and m2 be two
independent BPAs in the frame of discernment �. So the combined BPA
m = m1 ⊕m2 is defined as:

m(A) =

⎧⎪⎨⎪⎩

1

1−K

∑
B∩C=A

m1(B)m2(C), A ≠ ∅,

0, A = ∅,
(5)

where

K =
∑

B∩C=∅

m1(B)m2(C), (6)

and B,C ∈ 2�. Universally, we call K as the coefficient to measure the
conflicts between m1 and m2.

Note that from Eqs. (5) and (6), the range of K is inferred: 0 ≤ K

< 1.

2.2. Belief divergence methods

2.2.1. BJS divergence and B divergence measure for two BPAs
A Belief Jensen–Shannon divergence (BJS divergence) was pre-

sented by Xiao (2019) to quantify the conflict between BPAs.

Definition 2.4 (BJS Divergence Measure). Let m1 and m2 be two inde-
pendent BPAs, and A is a hypothesis in the frame of discernment �.
A BJS divergence measure between two BPAs m1 and m2 is defined as
follows:

BJS(m1, m2) =
1

2
[S

(
m1,

(m1 + m2)

2

)
+ S

(
m2,

(m1 + m2)

2

)
], (7)

where S
(
m1, m2

)
=

∑2n−1
i=1 m1

(
Ai

)
log

m1(Ai)
m2(Ai)

and
∑2n−1

i=1 mj (Ai) = 1 (j =

1, 2).
So BJS(m1, m2) divergence is also expanded, and expressed with the

following formula:

BJS(m1, m2) =
1

2

2n−1∑
i=1

m1(Ai) log(
2m1(Ai)

m1(Ai) + m2(Ai)
)

+
1

2

2n−1∑
i=1

m2(Ai) log(
2m2(Ai)

m1(Ai) + m2(Ai)
).

(8)

Definition 2.5 (B Divergence Measure for Two BPAs). Let m1 and m2 be
two BPAs in the frame of discernment �, in which there are n mutually
exclusive hypotheses. In this frame of discernment �, let Ai and Aj be
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Fig. 1. The overlap-relationship between focal elements of BPAs.

two hypotheses from m1 and m2 (1 ⩽ i, j ⩽ 2n − 1 ). The B belief
divergence measure between m1 and m2 is defined as

B(m1, m2) =
1

2

2n−1∑
i=1

2n−1∑
j=1

m1(Ai) log
m1(Ai)

1

2
m1(Ai) +

1

2
m2(Aj )

|Ai ∩ Aj |
|Aj |

+
1

2

2n−1∑
i=1

2n−1∑
j=1

m2(Aj ) log
m2(Aj )

1

2
m1(Ai) +

1

2
m2(Aj )

|Ai ∩ Aj |
|Ai| ,

(9)

where the |Ai| represents the cardinality of subset of Ai, and |Ai ∩ Aj |
equals the cardinality of intersection subset between Ai and Aj .

Obviously, when the focal elements are only constituted with sin-

gletons, that is:
|Ai∩Aj |
|Ai| = 0 or

|Ai∩Aj |
|Ai| = 1 (1 ⩽ i, j ⩽ 2n − 1 ), the B

divergence will degenerate into BJS divergence:

B(m1, m2) =
1

2

2n−1∑
i=1

m1(Ai) log
m1(Ai)

1

2
m1(Ai) +

1

2
m2(Ai)

+
1

2

2n−1∑
i=1

m2(Ai) log
m2(Ai)

1

2
m1(Ai) +

1

2
m2(Ai)

.

(10)

2.2.2. Analysis of BJS and B divergence measure methods
In this subsection, numeric examples of BJS divergence measure and

B divergence measure applied in evidence theory are presented. Fur-
thermore, based on these concrete numeric examples, the performance
of these divergence measures is analyzed and becomes the motivation
of our proposed divergence method.

BJS divergence, a generalized model based on Jensen–Shannon
divergence measure, is presented to measure the difference between
BPAs. However, the limitation of BJS divergence is obvious, which ne-
glects the correlation between subsets of BPAs. Here follows a concrete
example to elaborate this limitation.

Example 1. Suppose that there are three independent BPAs: m1, m2

and m3 in the frame of discernment � = {A,B, C}:

m1 ∶ m1({A}) = 0.2, m1({B}) = 0.8;

m2 ∶ m2({B}) = 0.2, m2({C}) = 0.8;

m3 ∶ m3({A,B}) = 1.

According to the three BPAs above, it is noticed that m1 assigns its
belief value to two singletons {A} and {B}, and m2 also assigns its belief
value to two singletons {B} and {C}, while m3 completely supports
the subset {A,B}. As shown in Fig. 1, the focal-element-relationship
of three BPAs presented by overlapped circles is in line with intuition:
the pair of m1 and m3 is more mutually supportive than the pair of
m2 and m3. In other words, the former pair of m1 and m3, which is less
conflicting, should have lower divergence than the latter pair of m2 and
m3:

divex
(
m1, m3

)
< divex

(
m2, m3

)
,

where the function of divex
(
mi, mj

)
denotes a relatively appropriate

measure between mi and mj .
However, the outcome yielded by the BJS divergence measure is as

follows:

BJS(m1, m3) = BJS(m2, m3) = 1.

This result is not coordinated with intuition and reveals that the BJS
divergence does not take these similarities between subsets into con-
sideration. To overcome the limitation of BJS divergence measure, the
later presented B divergence measure seems a promotion of BJS diver-
gence measure, because it takes the overlap-relationship of different
BPAs into account.

The B divergence measure seems a promotion of BJS divergence
measure, as it takes into account the similarities between subsets of
different BPAs. As is pointed out in Example 1, an expected divergence
measure yields the consequence: divex

(
m1, m3

)
< divex

(
m2, m3

)
in that

case. The B divergence measure is implemented in Example 1 and
outputs the results:

B(m1, m3) = 1.3313;

B(m2, m3) = 3.3152.

So we have:

B(m1, m3) < B(m2, m3).

This result is in line with the expected answer in Example 1. How-
ever, B divergence measure also has a limitation, which is discussed in
Example 2.

Example 2. Suppose that there are two BPAs m1 and m2 in the frame
of discernment � = {A,B}, where variable � is in the interval of [0, 1]:

m1 ∶ m1({A}) = �, m1({A,B}) = 1 − �;

m2 ∶ m2({A}) = 1.

With � ranging from 0 to 1, the value of m1 (A) simultaneously varies
from 0 to 1, while m1 (A,B) decreases from 1 to 0 on the other hand. It
is intuitively obvious that the difference between m1 and m2 is lowing.
Finally, when � = 1, m1 is completely equivalent to m2. But, as shown
in Fig. 2, in the process of increment of � from 0 to 1, an intuition-
opposite turning point is revealed in the curve of B

(
m1, m2

)
. However,

the conflict should have been reduced when m1 and m2 tend to be
increasingly mutually supportive. So on account of this limitation in
B divergence, a new divergence measure needs to be explored to more
appropriately quantify the divergence between BPAs.

3. A fractal-based belief KL divergence measure

In this section, combined with a fractal preprocess, a new belief
Kullback–Leibler (KL) divergence is devised. In order to obtain better
properties of this model, a symmetric fractal-based belief KL divergence
measure is proposed. Additionally, numerical examples are given to
illustrate how the proposed divergence measure can overcome the
limitations of BJS and B divergences. Then, properties are analyzed
and proved, which can benefit practical problems.

3.1. The process of probability transformation based on fractal

BPA can express more information by assigning the mass functions
to the multi-element focal elements. Thus, how to reasonably transform
BPA into its fractal form is the key to obtaining essential information
about the BPA. Inspired by pignistic probability transformation (Zhou
and Deng, 2022), a fractal splitting of a BPA is defined as follows:

3
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Fig. 2. The B divergence measure.

Definition 3.1 (A Fractal Splitting of One BPA). Let mk be one BPA in
the frame of discernment �, where k = 1, 2,…. The transformation
from basic probability assignment (BPA) mk into fractal-based basic
probability assignment (FBBPA) mFk

process is defined as (Zhou and
Deng, 2022):

mFk

(
Hi

)
=

∑
Hi⊆Gi

mk

(
Gi

)

2|Gi| − 1
, (11)

This process can be shown in Fig. 3. It is noticed that for ev-
ery multiset in the given BPA, it is uniformly split into its power
set. As is discussed in Zhou and Deng (2022), the FBBPA is neither
BPA nor probability distribution, but it describes the characteristics of
BPA from the perspective of probability. Therefore, inspired by this
splitting process, the divergence measurement can be conducted with
fractal process. Furthermore, this proposed FBDKL in Section 3.2 and
FBDSKL in Section 3.3 are the first belief divergence models which
are incorporated with the fractal concept to measure the dissimilarity
between two BPAs.

3.2. Fractal-based belief KL divergence

In this section, inspired by Deng entropy and fractal concept, a
fractal-based belief KL divergence is proposed to measure conflict
between BPAs.

Definition 3.2 (Fractal-based Belief KL Divergence Measure). Let m1 and
m2 be two BPAs in the frame of discernment �. The belief divergence
FBDKL between m1 and m2 is defined as:

FBDKL(m1, m2) =

2n−1∑
i=1

mF1

(
Hi

)
log

mF1

(
Hi

)

mF2

(
Hi

) , (12)

where mFk

(
Hi

)
is based on fractal process and is defined as:

mFk

(
Hi

)
=

∑
Hi⊆Gi

mk

(
Gi

)

2|Gi| − 1
,

where k = 1, 2 and Hi, Gi ⊆ �.

Properties. Let m1, m2 and m3 be three random BPAs, and Hi is a
focal element in the frame of discernment � (1 ⩽ i ⩽ 2n − 1). And the
cardinality of Hi, denoted as |Hi|, represents the number of elements
in Hi. Then, three properties of FBDKL are defined as follows.

(1) Asymmetry: FBDKL(m1, m2) ≠ FBDKL(m2, m1).

(2) Unboundedness: −∞ < FBDKL(m1, m2) < +∞.
(3) FBDKL

(
m1, m2

)
= DKL

(
m1, m2

)
, when ∀|Hi| = 1.

3.3. Symmetric fractal-based belief KL divergence

In this section, the FBDKL function is reinforced by constructing
it into a symmetric structure FBDSKL, which obtains better properties
applied to practical problems. So, a symmetric fractal-based belief KL
divergence is elaborated as follows.

Definition 3.3 (Symmetric Fractal-based Belief KL Divergence Measure).
Let m1 and m2 be two belief functions in the frame of discernment �.
The symmetric fractal-based belief KL divergence FBDSKL(m1, m2) is
defined as:

FBDSKL(m1, m2) =
1

2

2n−1∑
i=1

⎡
⎢⎢⎢⎣

mF1

(
Hi

)
log

mF1
(Hi)√

mF1
(Hi)×mF2

(Hi)

+mF2

(
Hi

)
log

mF2
(Hi)√

mF2
(Hi)×mF1

(Hi)

⎤
⎥⎥⎥⎦
, (13)

where mFk

(
Hi

)
is based on fractal process and is defined as:

mFk

(
Hi

)
=

∑
Hi⊆Gi

mk

(
Gi

)

2|Gi| − 1
,

where k = 1, 2 and Hi, Gi ⊆ �.

Theorem 1. The symmetric fractal-based belief KL divergence has proper-
ties (1)–(4) below for measurement.

Properties. Let m1, m2 and m3 be three random BPAs, and Hi is a focal
element in the frame of discernment � (1 ⩽ i ⩽ 2n − 1). The cardinality
of Hi, denoted as |Hi|, represents the number of exclusive elements in
Hi. Then, four properties are defined as follows.

(1) Nonnegativity: 0 ⩽ FBDSKL(m1, m2) < +∞.
(2) Nondegeneracy: FBDSKL(m1, m2) = 0 if and only if m1 = m2.
(3) Symmetry: FBDSKL(m1, m2) = FBDSKL(m2, m1).
(4) FBDSKL

(
m1, m2

)
=

1

4

(
DKL

(
m1, m2

)
+DKL

(
m2, m1

))
,

when ∀|Hi| = 1.

Proof. (1) FBDSKL(m1, m2) could be deformed as follows:

FBDSKL(m1, m2) =
1

2

2n−1∑
i=1

⎡⎢⎢⎢⎣

mF1

(
Hi

)
log

mF1
(Hi)√

mF1
(Hi)×mF2

(Hi)

+mF2

(
Hi

)
log

mF2
(Hi)√

mF2
(Hi)×mF1

(Hi)

⎤⎥⎥⎥⎦

=
1

2

2n−1∑
i=1

⎡⎢⎢⎢⎣

mF1

(
Hi

)
log

√
mF1

(Hi)
mF2

(Hi)

+mF2

(
Hi

)
log

√
mF2

(Hi)
mF1

(Hi)

⎤
⎥⎥⎥⎦

=
1

2

2n−1∑
i=1

⎡⎢⎢⎢⎣

1

2
mF1

(
Hi

)
log

mF1
(Hi)

mF2
(Hi)

+
1

2
mF2

(
Hi

)
log

mF2
(Hi)

mF1
(Hi)

⎤⎥⎥⎥⎦

=
1

4

2n−1∑
i=1

[
mF1

(
Hi

) (
logmF1

(
Hi

)
− logmF2

(
Hi

))
+mF2

(
Hi

) (
logmF2

(
Hi

)
− logmF1

(
Hi

))
]

=
1

4

2n−1∑
i=1

[
mF1

(
Hi

)
logmF1

(
Hi

)
− mF1

(
Hi

)
logmF2

(
Hi

)
+mF2

(
Hi

)
logmF2

(
Hi

)
− mF2

(
Hi

)
logmF1

(
Hi

)
]

=
1

4

2n−1∑
i=1

[
logmF1

(
Hi

) (
mF1

(
Hi

)
− mF2

(
Hi

))
− logmF2

(
Hi

) (
mF1

(
Hi

)
− mF2

(
Hi

))
]

=
1

4

2n−1∑
i=1

[(
logmF1

(
Hi

)
− logmF2

(
Hi

)) (
mF1

(
Hi

)
− mF2

(
Hi

))]
.

It is obvious that:
(
logmF1

(
Hi

)
− logmF2

(
Hi

))(
mF1

(
Hi

)
− mF2

(
Hi

))
⩾ 0.

4
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Fig. 3. The fractal process of BPA mk into FBBPA mFk
.

So, for i = 1,… , 2n − 1, any subitem in FBDSKL(m1, m2)

1

2

⎡⎢⎢⎢⎣
mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+mF2

(
Hi

)
log

mF2

(
Hi

)
√

mF2

(
Hi

)
× mF1

(
Hi

)
⎤⎥⎥⎥⎦

satisfies that:

1

2

⎡⎢⎢⎢⎣
mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+mF2

(
Hi

)
log

mF2

(
Hi

)
√

mF2

(
Hi

)
× mF1

(
Hi

)
⎤
⎥⎥⎥⎦
⩾ 0

Therefore, it is concluded that:

FBDSKL(m1, m2) ⩾ 0.

On the other hand, for 1 ⩽ i ⩽ 2n − 1, it is already proved that any
subitem in FBDSKL(m1, m2) satisfies:

1

2

⎡⎢⎢⎢⎣
mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+mF2

(
Hi

)
log

mF2

(
Hi

)
√

mF2

(
Hi

)
× mF1

(
Hi

)
⎤
⎥⎥⎥⎦
⩾ 0.

In addition, the figure of this two-dimensional function:

1

4

(
logmF1

(
Hi

)
− logmF2

(
Hi

))(
mF1

(
Hi

)
− mF2

(
Hi

))

is shown in Fig. 4.

Fig. 4. The value variation of subitem function in FBDSKL(m1 , m2).

According to the nonnegativity of any subitem in FBDSKL(m1, m2),
when i = p, it is considered that this specific subitem satisfies:

1

4

(
logmF1

(
Hp

)
− logmF2

(
Hp

))(
mF1

(
Hp

)
− mF2

(
Hp

))

⩽ FBDSKL(m1, m2)

Thus, when
(
logmF1

(
Hp

)
− logmF2

(
Hp

))
converges the value of

positive infinity, that is:
(
logmF1

(
Hp

)
− logmF2

(
Hp

))
→ +∞,

it is obvious that this subitem satisfies:

1

4

(
logmF1

(
Hp

)
− logmF2

(
Hp

))(
mF1

(
Hp

)
− mF2

(
Hp

))
→ +∞.

So, it is summarized that in this case:

FBDSKL(m1, m2) → +∞.

5
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Therefore, a conclusion is drawn that the upper bound of FBDSKL

(m1, m2) does not exist.
Hence, the nonnegativity of FBDSKL divergence measure has been

proved.

Proof. (2) If it satisfies m1 = m2, then for 1 ⩽ i ⩽ 2n − 1 , m1

(
Hi

)
=

m2

(
Hi

)
.

From the Eq. (11), a conclusion is drawn that mF1

(
Hi

)
= mF2

(
Hi

)
.

So, it is obvious to conclude the following equation:

FBDSKL(m1, m2) =
1

2

2n−1∑
i=1

mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+
1

2

2n−1∑
j=1

mF2

(
Hj

)
log

mF2

(
Hj

)
√

mF2

(
Hj

)
× mF1

(
Hj

)

=0.

Therefore, it is proved that if m1 = m2, then FBDSKL(m1, m2) = 0.
On the other hand, when it satisfies the equation FBDSKL(m1, m2) =

0, from Proof. (1), it is proved that for 1 ⩽ i ⩽ 2n − 1, it is already
proved that:

1

2

⎡
⎢⎢⎢⎣
mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+mF2

(
Hi

)
log

mF2

(
Hi

)
√

mF2

(
Hi

)
× mF1

(
Hi

)
⎤⎥⎥⎥⎦

=
1

4

(
logmF1

(
Hi

)
− logmF2

(
Hi

))(
mF1

(
Hi

)
− mF2

(
Hi

))

⩾ 0.

Thus, in this case, it is further concluded that

1

4

(
logmF1

(
Hi

)
− logmF2

(
Hi

))(
mF1

(
Hi

)
− mF2

(
Hi

))
= 0

It is obvious that if this function
(
logmF1

(
Hi

)
− logmF2

(
Hi

))
(
mF1

(
Hi

)
− mF2

(
Hi

))
equals the value of 0, then mF1

(
Hi

)
= mF2

(
Hi

)
.

Then it can be summarized that mF1
= mF2

, so from the Eq. (11), in this
case, it is further inferred that m1 = m2.

Therefore, it is proved that if FBDSKL(m1, m2) = 0, then m1 = m2.
Hence, the nondegeneracy of FBDSKL divergence measure has

been proved.

Proof. (3) Consider FBDSKL(m1, m2):

FBDSKL(m1, m2) =
1

2

2n−1∑
i=1

mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+
1

2

2n−1∑
j=1

mF2

(
Hj

)
log

mF2

(
Hj

)
√

mF2

(
Hj

)
× mF1

(
Hj

)

=
1

2

2n−1∑
i=1

mF2

(
Hi

)
log

mF2

(
Hi

)
√

mF2

(
Hi

)
× mF1

(
Hi

)

+
1

2

2n−1∑
j=1

mF1

(
Hj

)
log

mF1

(
Hj

)
√

mF1

(
Hj

)
× mF2

(
Hj

)

=FBDSKL(m2, m1).

Thus, we have FBDSKL(m1, m2) = FBDSKL(m2, m1).
Hence, the symmetry of FBDSKL is proved.

Proof. (4) ConsiderHi in the frame of discernment �, then forHi ∈ 2�:

If m1

(
Hi

)
> 0 or m2

(
Hi

)
> 0, then |Hi| = 1. Therefore:

mFk

(
Hi

)
=

∑
Hi⊆Gi

mk

(
Gi

)

2|Gi| − 1
=

mk

(
Hi

)

21 − 1
= mk

(
Hi

)
, where k = 1, 2.

Thus, we have:

FBDSKL(m1, m2) =
1

2

2n−1∑
i=1

mF1

(
Hi

)
log

mF1

(
Hi

)
√

mF1

(
Hi

)
× mF2

(
Hi

)

+
1

2

2n−1∑
j=1

mF2

(
Hj

)
log

mF2

(
Hj

)
√

mF2

(
Hj

)
× mF1

(
Hj

)

=
1

2

2n−1∑
i=1

m1

(
Hi

)
log

√√√√m1

(
Hi

)

m2

(
Hi

)

+
1

2

2n−1∑
i=1

m2

(
Hi

)
log

√√√√m2

(
Hi

)

m1

(
Hi

)

=
1

4

2n−1∑
i=1

m1

(
Hi

)
log

m1

(
Hi

)

m2

(
Hi

)

+
1

4

2n−1∑
i=1

m2

(
Hi

)
log

m2

(
Hi

)

m1

(
Hi

)

=
1

4

(
DKL

(
m1, m2

)
+DKL

(
m2, m1

))
.

Thus, it is proved that under the certain circumstance ∀|Hi| = 1,
then it is concluded that FBDSKL

(
m1, m2

)
=

1

4

(
DKL

(
m1, m2

)
+DKL(

m2, m1

))
.

3.4. Performance of fractal-based belief KL divergence measure

In this section, several examples are provided to evaluate the per-
formance of the symmetric fractal-based belief KL divergence measure.

Note that the value of FBDSKL(m1, m2) tends to infinity when

fractal assignment value of
√

mF1

(
Hi

)
× mF2

(
Hi

)
converges to 0. In

this case, this proposed function FBDSKL(m1, m2) is not applied. So an
extremely small constant number 1×10−12 is defined to act as the lower
bound of the fractal BPA assignment and replace those values out of this
lower bound (even zero) (Guo and Xin, 2005).

Let us return to Example 1, after constructing the fractal evidence
functions, the final results are calculated as follows:

FBDSKL

(
m1, m3

)
= 3.3618,

FBDSKL

(
m2, m3

)
= 14.3125.

In Example 1, according to Fig. 1, it is true that the function pair be-
tween m1 and m3 is much less conflicting than the pair between m2 and
m3. Therefore, unlike BJS divergence, symmetric fractal-based belief KL
divergence takes the power sets of multisets into consideration.

Then, let us return to Example 2. With the increment of variable �,
it is obvious that the conflict between m1 and m2 is lowing, and finally,
when � = 1, m1 is equivalent to m2. As shown in Fig. 5, The curve trend
of FBDSKL, marked with orange color, is in line with the expected
result. Note when m1 is equivalent to m2, we have:

FBDSKL(m1, m2) = 0. (14)

Note that in this condition: m1 = m2, the nondegeneracy property of
the symmetric fractal-based belief KL divergence is revealed in Eq. (14).

As for theB divergence marked with the blue color, there is a coun-
terintuitive turning point in the curve. And this turning point reveals
that the divergence between m1 and m2 is not monotone decreasing.
This is a departure from our expectation because the m1 and m2 should
have less conflict as m1 is increasingly similar to m2.

So in this case, the proposed symmetric fractal-based belief KL
divergence is in line with the trend, while B divergence appears to
have limitations to reflect the divergence between two BPAs.

6
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Fig. 5. The divergence measure comparison.

Fig. 6. The comparisons between fractal functions . (a) Fractal BPAs of mF1
and mF2

.
(b) Fractal BPAs of mF1

and mF3
.

Example 3. Suppose that there are three independent BPAs m1, m2 and
m3 in the frame of discernment � = {A,B, C}:

m1 {A} =
1

3
, m1 {B} =

1

3
, m1 {C} =

1

3
;

m2 {A,B} =
1

3
, m2 {A,C} =

1

3
, m2 {B,C} =

1

3
;

m3 {A,B, C} =
1

3
.

According to Eq. (11), the mF1
, mF2

and mF3
are calculated, respec-

tively. Then, the divergence value comparisons between mF1
and mF2

,

as well as comparisons between mF1
and mF3

are shown in Fig. 6(a)
and (b), respectively. It is clearly noticed that conflict between mF1

and
mF2

is less than conflict between mF1
and mF3

. The proposed FBDSKL

measure is implemented to quantify the conflict of these two pairs of
BPAs. Finally, the results are obtained:

FBDSKL

(
m1, m2

)
= 3.1065,

FBDSKL

(
m1, m3

)
= 5.4683.

Hence, we have:

FBDSKL

(
m1, m2

)
< FBDSKL

(
m1, m3

)
.

This consequence is in line with expectations. By splitting the BPA
through a fractal process, the proposed symmetric fractal-based belief
KL divergence is effective in measuring the conflict between BPAs.

4. A novel FBDSKL-based multi-source data fusion algorithm

In this section, the symmetric fractal-based belief KL divergence
model is applied in multi-source data fusion. Thus, the FBDSKL-based
multi-source data fusion (FBDSKL-MSDF) algorithm is proposed. The
specific algorithm steps are shown in detail as follows and a flowchart
of the FBDSKL-MSDF algorithm is shown in Fig. 7.

Step 1: The proposed FBDSKL measure between two arbitrary
BPAs, mi and mj (i, j = 1, 2,… , N) each of which contains n mutually
exclusive events, is implemented in Eq. (13). The conflict measure
matrix (CMM) composed with the FBDSKL divergence between mi and
mj is constructed as follows:

CMM =

⎡
⎢⎢⎢⎢⎣

0 FBDSKL12
⋯ FBDSKL1N

FBDSKL21
0 ⋯ FBDSKL2N

⋮ ⋮ ⋱ ⋮

FBDSKLN1
FBDSKLN2

⋯ 0

⎤
⎥⎥⎥⎥⎦
. (15)

Step 2: Then, a similarity measure matrix (SMM) is constructed by
the normalization method.

SMM =

⎡⎢⎢⎢⎢⎣

1 S12 ⋯ S1N

S21 1 ⋯ S2N

⋮ ⋮ ⋱ ⋮

SN1 SN2 ⋯ 1

⎤⎥⎥⎥⎥⎦
, (16)

where Sij =
max

(
FBDSKLij

)
−FBDSKLij

max
(
FBDSKLij

)
−min

(
FBDSKLij

) and Sii is defined with con-

stant value 1, which temporarily explains the self-similarity, however,
is ignored in the following steps.

Step 3: The total calculated supporting value of every piece of
evidence is summed up by the elements which describe the extent of
favoring each other in the SMM. And this supporting value Sup

(
mi

)
is

defined as:

Sup
(
mi

)
=

N∑
j=1,j≠i

eSij . (17)

Step 4: After calculating the total supporting value Sup
(
mi

)
of each

BPA, the credit value of every BPA, Crdi, is obtained by the Sup
(
mi

)
proportion:

Crdi =
Sup

(
mi

)
∑N

i=1 Sup
(
mi

) . (18)

Step 5: On the basis of the normalized supporting value Crdi, the
initial evidence is averaged with this weight Crdi. And the new BPA m̃

is calculated:

m̃ =

N∑
i=1

(
Crdi × mi

)
. (19)

Step 6: The newly averaged BPA m̃ is merged with N − 1 times by
Dempster’s combination rule:

F in
(
m̃
)
=
((((

m̃ ⊕ m̃
)
1
⊕ m̃

)
2
⊕ ...

)
N−2

⊕ m̃
)
N−1

. (20)

7
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Fig. 7. The flowchart of FBDSKL-MSDF algorithm.

Step 7: Based on the final fusion consequence, the highest singleton-
supporting value in F in

(
m̃
)
infers the target event Ak (1 ⩽ k ⩽ n), that

is:

Ak ← max
1⩽i⩽n

{
F in

(
m̃
(
Ai

))}
. (21)

The whole procedures of FBDSKL-MSDF are summarized into pseu-
docode in Algorithm 1. Now we analyze the complexity of the proposed
FBDSKL-MSDF method. The time complexity and space complexity of
each step are analyzed as shown in Table 1.

First, the time complexity of the algorithm is analyzed in detail. Step
1 is the operation to construct the CMM by calculating the FBDSKL

divergence in each pair of evidences, this operation consumes (N2) ×

(2n) in time complexity and (N2) × (2n) in space complexity. Step
2 transforms CMM into SMM, and consumes (N2) in time complexity
and (N2) × (2n) in space complexity. Step 3 calculates the sum of
supporting values, and consumes (N2) in time complexity and (N)

in space complexity. Based on the sum of supporting values, step 4
allocates the credit value to each BPA, and it consumes (N) in time
complexity and (N) in space complexity. Step 5 averages the BPAs
into m̃, and this consumes (N) in time complexity and (1) × (2n)

in space complexity. Finally, step 6 implements the Dempster’s rule
n − 1 times, and this consumes (N) × (2n) in time complexity and

8
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Algorithm 1: A novel FBDSKL-MSDF algorithm

Input: A set of evidence functions m =
{
m1, m2, ..., mi, mj , ..., mN

}
(every BPA contains n mutually exclusive events);

Output: Supporting event according to fusion results;
1 for i = 1; i ⩽ N do
2 for j = 1; j ⩽ N do
3 Compute the divergence FBDSKL(mi, mj ) using Eq. (13);
4 end

5 end
6 Construct the conflict measure matrix CMM using Eq. (15);
7 Compute the similarity measure matrix SMM using Eq. (16);
8 for i = 1; i ⩽ N do
9 Calculate the Supi of every BPA using Eq. (17);
10 end
11 for i = 1; i ⩽ N do
12 Normalize the Supi into Crdi weights using Eq. (18);
13 end
14 for i = 1; i ⩽ N do
15 With Crdi weights, average the initial BPAs into m̃ using

Eq. (19);
16 end
17 for i = 1; i ⩽ N − 1 do
18 Combine the m̃ with N − 1 times through Dempster’s

method into F in
(
m̃
)
using Eq. (20);

19 end
20 Select the target event Ak (1 ⩽ k ⩽ n) based on the highest

singleton-supporting value from F in
(
m̃
)
using Eq. (21);

Table 1
The time and space complexity in the FBDSKL-MSDF algorithm.

Steps Time complexity Space complexity Description

Step 1 (N2) × (2n) (N2) × (2n) Construct the CMM by
calculating FBDSKL

Step 2 (N2) (N2) × (2n) Transform CMM into SMM

Step 3 (N2) (N) Calculate the sum of
supporting values of each BPA

Step 4 (N) (N) Allocate the credit value to
each BPA

Step 5 (N) (1) × (2n) Average the BPAs into m̃

Step 6 (N) × (2n) (1) × (2n) Combine m̃ with Dempster’s
rule

Overall (N2) × (2n) (N2) × (2n) Computation complexity

Explanation of notations.
n ∶ the size of frame of discernment �;
N ∶ the number of BPAs to combine.

(1) × (2n) in space complexity. Thus, the overall time complexity

of the FBDSKL-MSDF algorithm is (N2) × (2n) and overall space

complexity of the FBDSKL-MSDF algorithm is (N2) × (2n).

As for the other methods: Dempster’s algorithm and Murphy’s al-

gorithm take (N) × (2n) in time complexity and (2n) in space

complexity, because they do not construct the matrix like CMM or

SMM to reflect the relationship between two BPAs; Deng et al.’s,

BJS divergence and B divergence algorithms expense the same with

our FBDSKL-MSDF algorithm: (N
2) × (2n) in time complexity and

(N2) × (2n) in space complexity. In general, computational com-

plexity comparisons among these methods can be intuitively seen in

Table 2. Although Dempster’s algorithm and Murphy’s algorithm reveal

less time consumption, these algorithms listed in Table 2, are applied in

numeric examples and applications, thus their performance is discussed

in Sections 5 and 6.

Table 2
The computational complexity comparison among different algorithms.

Algorithm Time complexity Space complexity

Dempster (N) × (2n) O (2n)

Murphy (N) × (2n) O (2n)

Deng et al. (N2) × (2n) (N2) × (2n)

BJS divergence (N2) × (2n) (N2) × (2n)

B divergence (N2) × (2n) (N2) × (2n)

FBDSKL-MSDF (N2) × (2n) (N2) × (2n)

Table 3
BPA with their belief values.

BPA {A} {B} {C} {A,C}

m1 0.50 0.08 0.30 0.12
m2 0.60 0.09 0.01 0.30
m3 0.43 0.06 0.01 0.50
m4 0.01 0.40 0.38 0.21
m5 0.40 0.19 0.01 0.40

5. Experiments

In this section, a concrete recognition experiment with multi-source
is conducted to analyze the performance of FBDSKL-MSDF algorithm.
Then, a sensitivity analysis is implemented to verify the robustness
of this FBDSKL-MSDF algorithm. Experimental data based on data
set (Deng et al., 2004) are used for comparison among existing meth-
ods. To make our conclusion convincing, the classic multi-source fu-
sion algorithms of Dempster (2008), Deng et al. (2004) and Murphy
(2000) are first taken into account. Furthermore, the noted and existing
divergence-based multi-source fusion algorithms, including BJS diver-
gence andB, are introduced in Section 2. A further overall performance
analysis among them with the proposed FBDSKL-MSDF method is
conducted in this section and the application section.

5.1. Problem statement

Suppose there are three singleton target hypotheses {A}, {B}, and
{C} in the frame of discernment �. Additionally, in Table 3, there are
five BPAs m1, m2, m3, m4 and m5 given to help us to make a decision of
the final supporting target.

5.2. Implementation of FBDSKL-MSDF algorithm

Step 1: Construct the conflict measure matrix (CMM) as follows:

CMM =

⎡⎢⎢⎢⎢⎢⎣

0 0.0893 0.0748 0.3603 0.0944

0.0893 0 0.0236 0.5742 0.0346

0.0748 0.0236 0 0.5056 0.0428

0.3603 0.5742 0.5056 0 0.3520

0.0944 0.0346 0.0428 0.3520 0

⎤⎥⎥⎥⎥⎥⎦

.

Step 2: Convert constructed CMM above into a similarity measure
matrix (SMM) as follows:

SMM =

⎡
⎢⎢⎢⎢⎢⎣

1 0.8806 0.9070 0.3886 0.8714

0.8806 1 1.0000 0 0.9800

0.9070 1.0000 1 0.1245 0.9650

0.3886 0 0.1245 1 0.4036

0.8714 0.9800 0.9650 0.4036 1

⎤
⎥⎥⎥⎥⎥⎦

.

Step 3: Calculate the summed supporting value of every BPA as
follows:

Sup
(
m1

)
= 8.7546,

Sup
(
m2

)
= 8.7951,

Sup
(
m3

)
= 8.9527,

Sup
(
m4

)
= 5.1047,

Sup
(
m5

)
= 9.1767.

9
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Table 4
Results generated by different methods.

Method {A} {B} {C} {A,C} Target

Dempster (2008) 0.8480 0.0003 0.1374 0.0143 A

Murphy (2000) 0.8971 0.0007 0.0871 0.0152 A

Deng et al.
(2004)

0.9230 0.0004 0.0625 0.0142 A

BJS divergence
(Xiao, 2019)

0.9234 0.0004 0.0620 0.0143 A

B divergence
(Xiao, 2020)

0.9184 0.0005 0.0636 0.0175 A

Proposed method 0.9328 0.0003 0.0533 0.0136 A

Step 4: Normalize the calculated sum degrees as credit weights of
every BPA as follows:

Crd
(
m1

)
= 0.2147,

Crd
(
m2

)
= 0.2157,

Crd
(
m3

)
= 0.2195,

Crd
(
m4

)
= 0.1251,

Crd
(
m5

)
= 0.2250.

Step 5: Average the initial BPAs into m̃ as follows:

m̃ ({A}) = 0.4244,

m̃ ({B}) = 0.1426,

m̃ ({C}) = 0.1185,

m̃ ({A,C}) = 0.3165.

Step 6: Combine the averaged BPA m̃ with n − 1 times and get the
final answer F in

(
m̃
)
as shown in Fig. 8 and Table 4:

Step 7: Select the objective A as the target event.
As shown in Table 4, it is noticed that event A is recognized as

the target with distinct recognition values according to the proposed
FBDSKL-MSDF algorithm and the other five well-known related algo-
rithms. Specifically, Dempster’s method recognizes the target A with
relatively lowest belief value of 0.8480 among the four methods. This
consequence may be caused by m5 that is highly conflicting with the
other four BPAs. However, Dempster’s method could not appropriately
cope with these highly conflicting BPAs. As a relatively marked im-
provement in the recognition value, Murphy’s method recognizes the
target A with a belief value of 0.8971 by implementing a numerical
average of BPA. Deng et al.’s method recognizes the target A with
a higher belief value of 0.9230. As for belief-based divergence algo-
rithms, the target recognition values of BJS divergence method and B

are 0.9234 and 0.9184, relatively. As is introduced in Examples 1 and
2, their performance may be restricted in some cases. FBDSKL-MSDF
method recognizes the target A with the highest belief value of 0.9328.
From Fig. 8, the recognition value is presented in a visualized way: the
highest accuracy indicates the proposed FBDSKL-MSDF method could
appropriately handle the highly conflicting and effectively recognize
the correct target in multi-source data fusion.

5.3. Sensitivity analysis

In this section, a sensitivity analysis is conducted to validate the su-
periority and robustness of the proposed FBDSKL-MSDF algorithm. To
accomplish this sensitivity analysis, white Gaussian noise with a square
deviation of 0.01 is added to the belief value of event {A} in every BPA.
After that, every BPA is normalized with a total belief value of 1. And
multi-source fusion algorithms, including Dempster’s method, Murphy’s
method, Deng et al.’s method, BJS divergence method, B divergence
method and FBDSKL-MSDF method, are implemented. Repeating this
whole process with 100 times, the varying recognition values of event
{A} are shown in Fig. 9, accompanied with its box chart of recognition
values in Fig. 9(a) and histogram of variances in Fig. 9(b).

Table 5
Mean recognition rates and variances generated by different methods.

Method Mean Variance Target

Dempster (2008) 0.8528 1.549 × 10−5 A

Murphy (2000) 0.8958 0.630 × 10−5 A

Deng et al.
(2004)

0.9183 0.468 × 10−5 A

BJS divergence
(Xiao, 2019)

0.9030 0.613 × 10−5 A

B divergence
(Xiao, 2020)

0.9274 0.453 × 10−5 A

Proposed method 0.9363 0.386 × 10−5 A

From Table 5, after conducting 100 times of experiments, all meth-
ods recognize the target A with obviously distinct values. Dempster’s
method obtains the lowest mean recognition value of 0.8528, be-
cause it cannot handle the conflict BPAs. Murphy’s method has higher
accuracy than Dempster’s method and obtains the mean recognition
value of 0.8958. The accuracy promotion seems obvious because Mur-
phy’s method conducts a numerical average preprocessing algorithm.
However, this averaging algorithm does not perfectly work out the
conflict between BPAs, for it does not take the discrepancy of BPAs
into consideration as well. As an accuracy promotion in Deng et al.’s
method, it obtains the mean recognition value of 0.9183. Introducing
the distance measure matrix, this method has a higher recognition
value than these previous methods. As for the BJS divergence method
and B divergence method, they obtain the mean recognition value of
0.9030 and 0.9274, relatively. Despite the apparent improvement in
accuracy by Deng et al.’s method, by contrast, the proposed FBDSKL-
MSDF algorithm method obtains the highest mean recognition value of
0.9363.

To analyze the sensitivity of each method, white Gaussian noise
with a square deviation of 0.01 is added to the belief value of event {A}
in every BPA. So, the recognition value of target {A} corresponding to
every experiment is shown in Fig. 9.

Based on recognition values from 100 times of experiments, the
distribution and variance of recognition values reflect sensitivity of its
model. From the box chart in Fig. 9(a), the discrete distribution of
data can be described in a visualized way, because the interval box
between the lower quartile and upper quartile represents the main data
aggregation range. Intuitively, it is noticed that the recognition value of
the proposed FBDSKL-MSDF algorithm is relatively densely distributed
with fewer outliers. And From the histogram of variances in Fig. 9(b),
the variance value is further directly displayed. The variance values
of six methods of Dempster, Murphy, Deng et al. BJS divergence, B
divergence and the proposed FBDSKL-MSDF algorithm, present with:
1.549 × 10−5, 0.630 × 10−5, 0.468 × 10−5, 0.613 × 10−5, 0.453 × 10−5,
0.386 × 10−5.

As a comparison among the three divergence algorithms: BJS di-
vergence method gets the lowest accuracy and the highest variance;
there are some performance improvements of B divergence in its
higher accuracy and lower variance, but there are more outliers from
Fig. 9(a) than other methods; FBDSKL-MSDF algorithm performs best
with the highest mean recognition value and the lowest variance. To
draw a conclusion in this case, by introducing fractal process and KL
divergence, even with varying BPAs caused by the Gaussian noise, it is
concluded that the FBDSKL-MSDF algorithm indeed reveals its highest
accuracy and robustness among the four methods as shown in Fig. 9 and
Table 5.

6. Application

In this section, the proposed FBDSKL-MSDF algorithm is applied in
two practical classification problems.
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Fig. 8. Results bar generated by different methods.

Fig. 9. Sensitivity analysis generated by different methods. (a) Box chart of recognition values of different methods. (b) Histogram of variances of different methods.

Firstly, the Iris and mammographic datasets are both obtained from
the UCI machine learning repository.1

Each dataset is comprised of p properties. And each dataset is
categorized into n types. For every type in one dataset, the data
portion of 60% are randomly selected as training dataset, and the other
40% are selected as test dataset. Based on the models constructed
with training data, the BPAs generated by the corresponding proper-
ties are given. In the recognition decision step, multi-source fusion
algorithms including Dempster’s method (Dempster, 2008), Murphy’s
method (Murphy, 2000), Deng et al.’s method (Deng et al., 2004), BJS
divergence (Xiao, 2019), B divergence (Xiao, 2020) and the proposed
FBDSKL-MSDF method are implemented, respectively. A generalized
process comprised of the model-training and multi-source fusion is

1 http://archive.ics.uci.edu/ml/datasets/.

described in Fig. 10. This process is repeated 100 times. In every single
process, the training data are reselected randomly, while the rest of the
raw data are labeled as the testing data.

Then, the recognition application is conducted with the Iris dataset,
which is comprised of 4 properties: sepal length, sepal width, petal
length and petal width. And Iris dataset can be categorized into 3
types of irises: Setosa, Versicolor and Virginica, each of which has 50
samples.

From Table 6, the recognition rates of methods of Dempster, Mur-
phy, Deng et al. BJS divergence, B divergence and the proposed
FBDSKL-MSDF method are separately displayed. In this classification
application: Dempster’s method obtains the mean accuracy of 0.9060;
Murphy’s method obtains the mean accuracy of 0.9223; Deng et al.’s
method obtains the mean accuracy of 0.9355; BJS divergence obtains
the mean accuracy of 0.9222, B divergence obtains the mean accuracy
of 0.9288; the proposed FBDSKL-MSDF method obtains the mean
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Fig. 10. The flowchart of experiment process.

Table 6
Mean recognition rates generated by different methods on Iris dataset.

Method Mean recognition rate

Dempster (2008) 0.9060
Murphy (2000) 0.9223
Deng et al. (2004) 0.9335
BJS divergence (Xiao, 2019) 0.9222
B divergence (Xiao, 2020) 0.9288
Proposed method 0.9408

Table 7
Mean recognition rates generated by different methods on mammographic dataset.

Method Mean recognition rate

Dempster (2008) 0.8573
Murphy (2000) 0.8565
Deng et al. (2004) 0.8714
BJS divergence (Xiao, 2019) 0.8867
B divergence (Xiao, 2020) 0.8771
Proposed method 0.8990

accuracy of 0.9408. Shown in Fig. 11, it is directly observed that
the proposed FBDSKL-MSDF method performs better than the three
existing well-known methods of Dempster, Murphy and Deng et al. and
two recently proposed belief divergence methods BJS divergence and
B divergence.

It is relatively simple with the limitation in dimension and the
number of samples of the Iris dataset. Further, we consider applying the
multi-source data fusion algorithms in the classification of the mammo-
graphic dataset obtained from the UCI machine learning repository. To
stress the significance of this application, we could make a decision on
the severity (benign or malignant breast cancer) based on the obtained
five attributes: BI-RADS (Breast Imaging Reporting and Data System)
assessment, age, shape, margin and density. There are 516 benign
medical samples and 445 malignant medical samples to study.

Except for the higher dimension in the dataset attributes and more
quantity in the samples, the experiment process is the same as the one
on the Iris dataset. From Table 7, the recognition rates of methods of
Dempster, Murphy, Deng et al. BJS divergence, B divergence and the
proposed FBDSKL-MSDF method are separately displayed. In addition
to the exact mean accuracy, it is directly observed from Fig. 12 that
the proposed FBDSKL-MSDF method performs better than the three
existing well-known methods of Dempster, Murphy and Deng et al. and
two recently proposed belief divergence methods BJS divergence and
B divergence.

In conclusion, the proposed FBDSKL-MSDF method is well applied
in the practical application according to its performance on the Iris
dataset and the mammographic dataset.

7. Conclusion

In this study, combined with a fractal preprocess with KL diver-
gence, a new divergence measure intended called FBDSKL for evidence
theory is proposed, which effectively measures mutual conflict between
given BPAs. The study’s key contribution is that the generalization
model based on KL divergence: FBDSKL, with desirable properties in-
cluding nonnegativity, nondegeneracy, symmetry and KL-equivalence,
is a well-constructed model, which makes it well applied in a great
diversity of conditions. Furthermore, when the divergence measure
between BPAs is quantified, the proposed FBDSKL further takes the
overlap-relationship between subsets of BPAs into consideration, which
positively influences the performance of a measure. In addition, a
multi-source data fusion algorithm based on the proposed belief di-
vergence measure FBDSKL, is developed and is called as FBDSKL-
MSDF algorithm. By conducting an experiment and sensitivity analysis
on this proposed FBDSKL-MSDF algorithm compared with the well-
known existing methods, its superiority and robustness are validated,
respectively, corresponding to the higher mean recognition rate and its
lower variance. Finally, it is verified that the proposed FBDSKL-MSDF
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Fig. 11. Recognition rates for target produced by different methods on Iris dataset. (a) Results of Dempster’s method and the proposed method. (b) Results of Murphy’s method and
the proposed method. (c) Results of Deng et al.’s method and the proposed method. (d) Results of BJS divergence method and the proposed method. (e) Results of B divergence
method and the proposed method.

Fig. 12. Recognition rates for target produced by different methods on a mammographic dataset. (a) Results of Dempster’s method and the proposed method. (b) Results of
Murphy’s method and the proposed method. (c) Results of Deng et al.’s method and the proposed method. (d) Results of BJS divergence method and the proposed method. (e)
Results of B divergence method and the proposed method.

algorithm outperforms the noted existing methods in a real-world

application. Based on the above, the proposed FBDSKL fills the gap

in the limitation of inappropriate handling between BPAs in the former

methods.

In spite of the superior performance in higher accuracy and stronger

robustness in the FBDSKL-MSDF algorithm, there still exists weakness

below: As is discussed in the computational complexity in FBDSKL-

MSDF algorithm in Section 4, the time and space consumption of

FBDSKL-MSDF algorithm can reach (N2) × (2n). This exponential

level is noticeable because a great deal of time and space may be

consumed if the numbers of BPAs reach large.

Based on the analyzed weakness, the future work can be firstly
focused on efficiency improvement. On the one hand, as for the time
complexity from Table 1, it is noticed that the construction of CMM
consumes the maximum amount of time in the FBDSKL-MSDF al-
gorithm. Every element in CMM needs to calculate the divergence.
To improve the calculation efficiency, the proposed FBDSKL measure
can be combined with quantum computing to make the computational
process parallelable. On the other hand, as for the space complexity,
the CMM and SMM are actually redundant in their matrix structure.
The symmetric part is a copy of the original element. To address
this problem, a better data structure may be put forward to store
the divergence value. Furthermore, from Table 2, the time and space
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complexity of the existing belief divergence algorithms including BJS
divergence and B divergence reach (N2) × (2n). Thus, to apply
these divergence measure methods to more complex applications (for
instance, the dimension and the number of samples have markedly
increased), the algorithm efficiency is urgent to improve. In addition,
in future work, we may also apply the proposed FBDSKL measure in
the complex field, which can make it a generalized method both in the
real number domain and the complex number domain.
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