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A B S T R A C T

Dempster–Shafer evidence theory (DSET) is extensively employed in multi-source data fusion applications.
Nonetheless, when belief probability assignments (BPAs) exhibit considerable conflict, unexpected results can
occur. To address this limitation, the high-order fractals are explored and a -order fractal-based Kullback–
Leibler divergence (O-FKL) is introduced, which defines the -order as the optimal fractal epoch. This
measure is employed to quantify the divergence between BPAs and demonstrates superior performance in
assessing the conflict between two BPAs in numerical examples, compared to existing belief divergence
methods. To utilize the O-FKL divergence measure to real-world problems, a novel O-FKL-based multi-
source data fusion (O-FKL-MSDF) algorithm is designed. Through comparisons with well-known related
methods, our proposed O-FKL-MSDF algorithm demonstrates superiority and enhanced robustness. Lastly,
the O-FKL-MSDF algorithm is applied to real-world classification problems, underlining its high practical
applicability.

1. Introduction

Multi-source data fusion is a technique that integrates information
from various sources to generate a final decision target in real-world
applications. A major challenge lies in managing highly conflicting
multi-source data. Specifically, due to the ambiguity, inconsistency,
or even inaccuracy of multi-source data, it is crucial to evaluate the
confidence level for each data source. This allows for the downgrading
or complete exclusion of unreliable data. Numerous well-established
theories exist in the multi-source data fusion domain to model and
address various types of uncertainties, including Z-number (Zhu, Liu
et al., 2022), soft set (Fujita et al., 2020), rough set (Ye et al., 2021),
fuzzy set (Garg & Rani, 2022) and multi-granularity (Miao et al.,
2023). Moreover, these theories have found extensive applications
across diverse fields, such as reliability analysis (Li, Huang et al.,
2022), malicious information localization (Wang, Hou et al., 2022),
emergency management (Che et al., 2022), pattern classification (Ko
& Koo, 2023; Xiao, Cao et al., 2022; Xiao, Wen et al., 2022) and
remote sensing image fusion (Kurban, 2022). Additionally, multi-source
data fusion is particularly essential for addressing large-scale complex
issues, including multi-attribute decision-making (Liu, Li et al., 2022),
multidisciplinary design optimization (Meng, Yang et al., 2022), multi-
agent learning (Chu et al., 2022; Wang, Mu et al., 2022), and other
applications (Meng, Wang et al., 2022; Wang et al., 2023).
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A fundamental theoretical basis for multi-source data fusion is
the Dempster–Shafer evidence theory (DSET) (Dempster, 1967; Shafer,
1976). The primary benefits of D-S evidence theory include its ability to
quantify belief values for individual targets as well as the unions of ob-
jects. Furthermore, D-S evidence theory allows for flexible and efficient
uncertainty reasoning through the Dempster combination rule without
requiring prior information. Due to its effectiveness and adaptability in
modeling uncertainty, D-S evidence theory has been extensively applied
in various information fusion domains (Deng, 2020b), such as group
decision-making (Hua et al., 2022; Zhou et al., 2023, 2022), multi-
criteria analysis (Fang et al., 2022), evidential reasoning (Ren et al.,
2022; Wang, Zhou et al., 2022), credit risk assessment (Wang, Liu et al.,
2022), portfolio construction in financial sector (Bisht & Kumar, 2023),
knowledge management (Anjaria, 2022), and database retrieval (Yager
et al., 2019).

Nevertheless, a significant challenge in Dempster’s method lies in its
ineffectiveness in handling highly conflicting BPAs, potentially leading
to counterintuitive results (Xiong et al., 2021). Various approaches
have been proposed to address this problem by measuring uncertainty
and managing conflicting BPAs. For instance, Deng et al. use a dis-
tance matrix to estimate the support degrees among given BPAs (Deng
et al., 2004). Building on this, some researchers explore this issue
from a novel perspective of belief divergence (Fan & Xiao, 2022;
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Xiao, 2019, 2020). Divergence measures provide advantages in quan-
tifying the differences and discrepancies between BPAs, facilitating
the management of conflicting information and enhancing decision-
making performance in uncertain contexts (Xiao, 2022a). Moreover, the
efficacy of divergence-based multi-source data fusion in conflict mea-
surement is verified. For example, divergence-based intuitionistic fuzzy
sets are well-suited for decision-making (Verma & Álvarez-Miranda,
2023). Additionally, this approach has been successfully employed in
EEG data analysis (Zhu, Xiao et al., 2022).

Among various uncertainty measurement techniques, belief diver-
gence has emerged as a novel and promising direction in data fusion.
In this study, our primary focus is on exploring belief divergence to
address multi-source data fusion challenges. A comprehensive analysis
of existing belief divergence methods reveals that, in some instances,
these approaches may produce counterintuitive results, which will be
discussed in detail in Section 2.4. Moreover, such counterintuitive
divergence values could impact the outcomes of algorithm applications,
including pattern recognition and classification. Therefore, developing
a belief divergence model that effectively measures the discrepancy
between BPAs has become an urgent necessity. To tackle this issue, this
paper introduces an innovative belief divergence measurement method
to overcome these challenges and enhance data fusion.

The fractal theory is renowned for its exceptional property of self-
similarity, where macro-level integral objects consist of similar parts.
Various fractal-based methods exist for uncertainty measurement, in-
cluding information volume (Deng, 2020a; Zhou & Deng, 2022) and
information dimension (Qiang et al., 2022). It has been observed that
subsets in different BPAs might be partially supported, implying that
fractal methods can evaluate the degree of overlap between events
in uncertain information processing. Building on this idea, Deng in-
troduces an improved belief structure satisfaction that considers the
overlapping degree between events (Deng & Cui, 2021). In combi-
nation with divergence measures, Zeng proposes an FBDSKL diver-
gence measure (Zeng & Xiao, 2023) that integrates a pignistic frac-
tal process (Smets, 2005) and divergence measurement to quantify
conflict between BPAs. However, this measurement only takes into
account a single fractal epoch, which may not be optimal for measuring
conflicts between BPAs. Consequently, the proposed divergence-based
measurement introduces a high-order fractal-based Kullback–Leibler
(HO-FKL) divergence and defines an ideal fractal epoch . The primary
contributions of this research can be summarized as follows:

• In the context of high-order fractal research, the optimal fractal
epoch is proposed. As a result, a -order fractal-based Kullback–
Leibler (O-FKL) divergence is introduced, which better mea-
sures the conflict between two BPAs under converging informa-
tion differences.
• Based on the newly defined O-FKL, a novel O-FKL-based
multi-source data fusion (O-FKL-MSDF) algorithm is proposed.
• The O-FKL-MSDF algorithm is subjected to an experiment and
sensitivity analysis, as well as applied to classification problems
involving five datasets with varying complexity levels, demon-
strating high accuracy and strong robustness.

The remainder of this paper is organized as follows. Section 2 offers
a brief overview of the fundamental concepts of evidence theory, and
reviews existing related methods in the field. Section 3 introduces the
-order fractal-based Kullback–Leibler divergence and thoroughly an-
alyzes its characteristics through various examples. In Section 4, based
on the proposed O-FKL, a novel multi-source data fusion algorithm
(O-FKL-MSDF) is presented. Section 5 demonstrates the superiority
and robustness of the O-FKL-MSDF algorithm through multi-source
data fusion experiments for target recognition and a sensitivity analysis.
In Section 6, the practical applicability of the proposed method is show-
cased using real-world datasets and compared with well-established ex-
isting approaches. Finally, Section 7 summarizes the research findings
and future directions.

2. Preliminaries

2.1. Dempster–Shafer evidence theory

D-S evidence theory (Dempster, 1967; Shafer, 1976), as a general-
ization and an extension of Bayes probability theory, is a powerful and
classical tool for handling ambiguous data. Consequently, it has been
applied to various theories, including probability transformation (Chen
et al., 2021), belief rule base (Chang et al., 2021), random permutation
set (Chen & Deng, 2023; Chen et al., 2023a; Deng, 2022), evidence
reasoning (Xu et al., 2020), complex evidence theory (Yang & Xiao,
2022), and generalized quantum evidence theory (Xiao, 2022b, 2023;
Xiao & Pedrycz, 2022).

Definition 2.1 (Frame of Discernment). Let � be a set of events that are
mutually exclusive and collectively exhaustive. Thus, we have

� = {H1,H2,… ,Hk,… ,Hn}, (1)

which is defined as a frame of discernment.

Comprised of all the subsets in �, the power set of �, denoted as
2�, is defined as

2� = {∅, {H1},
{
H2

}
,… ,

{
Hn

}
, {H1,H2},… , {H1,H2,… ,Hk},… , �},

(2)

where ∅ represents an empty set. It is evident that the number of
subsets in 2� is 2n.

If A ∈ 2�, then A is referred to as a hypothesis.

Definition 2.2 (Mass Function). In the frame of discernment �, a mass
function from 2�, denoted by m, is defined as:

m ∶ 2
�
→ [0, 1], (3)

which also satisfies the following conditions:
∑
A∈2�

m(A) = 1 and m(∅) = 0, (4)

where m(A) quantifies the belief value of hypothesis A. In D-S theory,
a mass function m is also referred to as a BPA. If m(A) > 0, A is called
a focal element. Because BPA effectively expresses uncertainty, it has
been well-studied (Deng, 2020b; Li, Pelusi et al., 2022).

Definition 2.3 (Belief Function and Plausibility Function). Let A be a
hypothesis in the frame of discernment �. A belief function Bel is
defined as the sum of the masses of all focal elements that contain A:

Bel (A) =
∑
B⊆A

m (B). (5)

Similarly, a plausibility function P l is defined as the sum of the
masses of all focal elements that intersect with A:

P l (A) =
∑

B∩A≠⊘

m (B). (6)

It is essential to note that P l(A) ⩾ Bel(A), where Bel(A) and P l(A)

represent the lower and upper limits of the hypothesis A, respectively.

Definition 2.4 (Dempster’s Rule of Combination). Let m1 and m2 be two
independent BPAs in the frame of discernment �. The combined BPA
m = m1 ⊕m2 is defined as:

m(A) =

⎧⎪⎨⎪⎩

1

1−K

∑
B∩C=A

m1(B)m2(C), A ≠ ∅,

0, A = ∅,
(7)

where

K =
∑

B∩C=∅

m1(B)m2(C), (8)
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and B,C ∈ 2�. Generally, the coefficient K is used to measure the level
of conflict between m1 and m2.

Note that from Eqs. (7) and (8), the range of K is inferred: 0 ≤ K

< 1.

2.2. Information entropy of BPA

In the realm of uncertainty measurement, entropy serves as a means
to quantify the amount of information contained within a BPA. Shan-
non entropy (Shannon, 2001), a classic information entropy, is com-
monly employed to measure the uncertainty of probability distribu-
tions. In the context of measuring BPAs, Deng entropy and its ex-
tensions (Deng, 2020b) are widely adopted for quantifying BPA un-
certainty. Furthermore, entropy has practical applications, such as
measuring EEG (Cao et al., 2019), demonstrating its versatility and
utility in various fields.

Definition 2.5 (Shannon Entropy). Let P be a probability distribution
defined in the frame of discernment � =

{
H1,H2,… ,Hn

}
. Then,

Shannon entropy is defined (Shannon, 2001):

Hs(P ) =
∑
�∈�

−P (�) logP (�), (9)

where
∑

�∈� P (�) = 1 and 0 < P (�) ⩽ 1. Typically, Shannon entropy
is measured in the log base of 2. In this condition, it is noted that
0 ⩽ Hs(P ) ⩽ log2 n.

Definition 2.6 (Deng Entropy). Let m be BPA in the frame of discern-
ment �, the Deng entropy is defined (Deng, 2020b):

HDE (m) = −
∑
A∈2�

m (A) log

(
m (A)

2|A| − 1

)
, (10)

where |A| is the cardinality of focal element A.
Specifically, when each focal element is a single-element, the BPA

is reduced to a probability distribution. In this case, Deng entropy
degenerates into Shannon entropy.

2.3. Belief divergence between two BPAs

Recently, numerous divergence-based methods have been proposed
for measuring conflict between information (Chen et al., 2023b; Huang
et al., 2023; Song et al., 2019). Xiao introduced a Belief Jensen–
Shannon divergence (BJS divergence) (Xiao, 2019) to quantify the
conflict between BPAs. Subsequently, several divergence measures have
been proposed to assess the discrepancy and conflict among BPAs.
Among these methods, B divergence (Xiao, 2020) stands out as a
representative approach for measuring the discrepancy between BPAs.

Definition 2.7 (BJS Divergence Measure). Let m1 and m2 be two inde-
pendent BPAs, and A is a hypothesis in the frame of discernment �.
A BJS divergence measure between two BPAs m1 and m2 is defined as
follows (Xiao, 2019):

BJS(m1, m2) =
1

2
[S

(
m1,

(m1 + m2)

2

)
+ S

(
m2,

(m1 + m2)

2

)
], (11)

where S
(
m1, m2

)
=

∑2n−1
i=1 m1

(
Ai

)
log

m1(Ai)
m2(Ai)

and
∑2n−1

i=1 mj (Ai) = 1 (j =

1, 2).
So BJS(m1, m2) divergence is also expanded, and expressed with the

following formula:

BJS(m1, m2) =
1

2

2n−1∑
i=1

m1(Ai) log(
2m1(Ai)

m1(Ai) + m2(Ai)
)

+
1

2

2n−1∑
i=1

m2(Ai) log(
2m2(Ai)

m1(Ai) + m2(Ai)
).

(12)

Definition 2.8 (B Divergence Measure for Two BPAs). Let m1 and m2 be
two BPAs in the frame of discernment �, in which there are n mutually
exclusive hypotheses. In this frame of discernment �, let Ai and Aj

be two hypotheses from m1 and m2 (1 ⩽, i, j,⩽, 2n − 1,). The B belief
divergence measure between m1 and m2 is defined as (Xiao, 2020):

B(m1, m2) =
1

2

2n−1∑
i=1

2n−1∑
j=1

m1(Ai) log
m1(Ai)

1

2
m1(Ai) +

1

2
m2(Aj )

|Ai ∩ Aj |
|Aj |

+
1

2

2n−1∑
i=1

2n−1∑
j=1

m2(Aj ) log
m2(Aj )

1

2
m1(Ai) +

1

2
m2(Aj )

|Ai ∩ Aj |
|Ai| ,

(13)

where the |Ai| represents the cardinality of subset of Ai, and |Ai ∩ Aj |
equals the cardinality of intersection subset between Ai and Aj .

It is evident that when the focal elements consist only of singletons,
the B divergence degenerates into BJS divergence:

B(m1, m2) =
1

2

2n−1∑
i=1

m1(Ai) log
m1(Ai)

1

2
m1(Ai) +

1

2
m2(Ai)

+
1

2

2n−1∑
i=1

m2(Ai) log
m2(Ai)

1

2
m1(Ai) +

1

2
m2(Ai)

.

(14)

The FBDSKL method, proposed by Zeng, combines the principles
of one iteration of fractals and has various desirable properties.

Definition 2.9 (FBDSKL Divergence Measure). Let m1 and m2 be two
BPAs in the frame of discernment �. The symmetric fractal-based belief
KL divergence FBDSKL(m1, m2) is defined as (Zeng & Xiao, 2023):

FBDSKL(m1, m2) =
1

2

2n−1∑
i=1

⎡⎢⎢⎢⎣

mF1

(
Hi

)
log

mF1
(Hi)√

mF1
(Hi)×mF2

(Hi)

+mF2

(
Hi

)
log

mF2
(Hi)√

mF2
(Hi)×mF1

(Hi)

⎤⎥⎥⎥⎦
, (15)

where mF

(
Hi

)
is called fractal-based basic probability assessment

(FBBPA) and is defined on a pignistic probability transformation
(Smets, 2005):

mF

(
Hi

)
=

∑
Hi⊆Gi

m
(
Gi

)

2|Gi| − 1
, (16)

where Hi, Gi ⊆ �.

2.4. Numerical analysis of BJS and B divergence measure methods

In this subsection, numerical examples of three divergence mea-
sures, namely BJS, B, and FBDSKL, are provided. By analyzing the
performance and limitations of these measures based on concrete ex-
amples, it is motivated to propose a new divergence method.

Example 1. Suppose there are two independent BPAs, m1 and m2, in
the frame of discernment � = A,B, where � is an independent variable
that ranges from 0 to 1:

m1 ∶ m1({A}) = 1 − �, m1({A,B}) = �;

m2 ∶ m2({B}) = 1.

In Example 1, when � = 0, it obtained that
{
m1 ({A}) = 1

m2 ({B}) = 1
, indicat-

ing maximum conflicts between m1 and m2, and the divergence should
also be maximum at this point. As � gradually increases, the belief value
in m1 ({A,B}) increases, while the belief value in m1 ({A}) decreases.
Thus, during this process, Bel (B) in m1 increases. Consider that it is
observed that m2 constantly supports event B. It is intuitively concluded
that the conflict between m1 and m2 decreases. Finally, when � = 1, it

is obtained that
{
m1 ({A,B}) = 1

m2 ({B}) = 1
, so there should still remain some

uncertainty, but the conflict level between m1 and m2 has been greatly

reduced compared with the initial status:
{
m1 ({A}) = 1

m2 ({B}) = 1
.
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Fig. 1. Divergence measure with varying � in Example 1.

Fig. 2. Divergence measure with varying � in Example 2.

However, from Fig. 1, it is observed that the BJS divergence remains
constant throughout. Moreover, theB divergence reveals an unobvious
inflection point. As for the FBDSKL divergence, its curve shows a trend
that is more in line with our expectations: On the one hand, as �

changes from 0 to 1, the conflict between m1 and m2 is continuously
decreasing. On the other hand, when � = 1, some conflicts are still
preserved.

Based on our analysis, it can be observed that the BJS divergence
(from Eq. (12)) does not consider the similarity between subsets, as it
only considers sets that are completely identical. On the other hand,
although the B divergence (from Eq. (13)) considers the correlation
between subsets, it still reveals a counter-intuitive inflection point. The
FBDSKL divergence is conducted with a fractal process, and is able to
take into account the similarity within events, which allows for more
accurate measurement of conflicts.

Example 2. Suppose there are two BPAs, denoted as m1 and m2, in
the frame of discernment � = A,B. The variable � ranges from 0 to 1

and takes independent values for each BPA, as follows:

m1 ∶ m1({A}) = �, m1({A,B}) = 1 − �;

m2 ∶ m2({A}) = 0.9999, m2({A,B}) = 0.0001.

In Example 2, as � increases, the conflict between m1 and m2 de-
creases until m1 becomes completely equivalent to m2 when � = 0.9999.
Intuitively observed in Fig. 2, the trends of BJS divergence curve and
FBDSKL curve are consistent with expectation. However, the curve

of B divergence in Fig. 2 shows an unexpected and counter-intuitive
inflection.

In summary, in Examples 1 and 2, both BJS divergence and B

divergence show some limitations in certain situations. Although the
FBDSKL divergence does not exhibit any intuitive contrast, it does not
mean that the model has no room for optimization. As the FBDSKL

model assumes only one fractal process, in this study, we need to
explore how many fractal processes are optimal. In other words, we
need to determine how many fractal processes are needed to accurately
characterize the relationship between information quantities among
BPAs.

3. A high order fractal-based Kullback–Leibler divergence

In this section, in order to find the ideal fractal process time, the
variance of information difference between 2 BPAs is observed. Thus,
combined with Deng entropy and FBDSKL, a High Order Fractal-
based Kullback–Leibler(HO-FKL) Divergence is devised. Then, the per-
formance of the HO-FKL is analyzed using several concrete examples.

3.1. A high order of fractal-based belief probability assignment

Definition 3.1 (A High Order Fractal-Based Belief Probability Assign-
ment). Let m be one BPA in the frame of discernment �, as the
number of fractal epoch k increases, a high order of fractal-based belief
probability assignment (HO-FBBPA) is defined as follows:

mk
F

(
Hi

)
=

∑
Hi⊆Gi

mk−1
F

(
Gi

)

2|Gi| − 1
, (17)

where Hi, Gi ⊆ �, k represents the fractal epoch and satisfies k ⩾ 1.
Specifically, when k = 1, which refers to the first fractal transformation
and is in line with Eq. (16). Thus, it is obtained that:

m1
F

(
Hi

)
=

∑
Hi⊆Gi

m0
F

(
Gi

)

2|Gi| − 1
=

∑
Hi⊆Gi

m
(
Gi

)

2|Gi| − 1
, (18)

where the HO-FBBPA m0
F
degenerates into BPA m.

As illustrated in Fig. 3, during each fractal process, multiple sub-
set elements undergo a uniform split, contributing to singleton belief
values. High-order splits involve multiple iterations of such fractal
processes. When no fractal process is applied, multi-element subsets
can increase the system’s uncertainty. As the number of fractal iter-
ations approaches infinity, the BPA will eventually degenerate into a
probability distribution.

Definition 3.2 (A High Order Fractal-Based Kullback–Leibler Divergence).
Let mk

F1
and mk

F2
be two HO-FBBPAs in the frame of discernment �.
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Fig. 3. High order fractal transformation process.

Fig. 4. Entropy measure with varying epoch k in Example 3.

A high order of fractal-based Kullback–Leibler (HO-FKL) divergence of
mk
F1
and mk

F2
is defined as follows:

HO-FKL
(
mk
F1
, mk

F2

)
=

1

2

⎡
⎢⎢⎢⎢⎢⎣

∑
i m

k
F1

(
Ai

)
log

(
mk
F1
(Ai)√

mk
F1
(Ai)×m

k
F2
(Ai)

)

+
∑

i m
k
F2

(
Ai

)
log

(
mk
F2
(Ai)√

mk
F1
(Ai)×m

k
F2
(Ai)

)

⎤
⎥⎥⎥⎥⎥⎦

, (19)

where k denotes the order of the fractal and satisfies the condition of
k ⩾ 1.

3.2. Analysis of Deng entropy change of a BPA during fractal process

In this section, during continuous fractal processes, changes and
characteristics in Deng entropy of a BPA are investigated. Then, based
on the analysis of the changes in entropy difference between two BPAs
during fractal processes, a criterion for selecting the ideal number of
the fractal epoch is proposed (see Fig. 4).

Example 3. Suppose that there is one BPA m1 in the frame of
discernment � = {A,B, C,D}:

m1 ({A,B, C,D}) = 1,

explore the changes of Deng entropy of mk
1
during the fractal process,

where k represents the number of fractal epoches.

According to the formula of Deng entropy in Eq. (10), it assigns
more uncertainty and information to multisets. Therefore, in Exam-
ple 3, when k = 0 (i.e., before the first fractal process), the system is in
the most uncertain state with m1(A,B, C,D) = 1, thus the information
entropy should be maximal. As shown in Eq. (16), with the increase
of fractal epoch k, mk

1
gradually approaches a probability distribution,

so Deng entropy gradually degenerates into Shannon entropy. From
Table 1 and Fig. 1, the change ofHDE value can be intuitively observed.

Based on the observations above, it is analyzed that for m1 in this
case: if it is not conducted with fractal process, its internal uncertainty
will be maximized. However, The maximized uncertainty is not con-
ducive to effectively measuring the discrepancy between BPAs. On the
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Table 1
Changes in Deng entropy during continuous fractal process.

Epoch k HDE value Epoch k HDE value

0 3.920358814 6 1.598649699
1 3.44996417 7 1.583373365
2 2.488201925 8 1.577554733
3 1.970179059 9 1.575373318
4 1.735978204 10 1.574565606
5 1.637923584

other hand, if the fractal epoch is too high, a BPA is almost completely
transformed into a probability distribution. Therefore, it is crucial to
find the ideal fractal epoch for the BPA, and use it as a preparation for
measuring the conflict between BPAs in the subsequent analysis.

Before we dive into Example 4, the concept of difference of Deng
entropy between two HO-FBBPAs is firstly introduced in order to better
analyze its relationship with HO-FKL in Example 4.

Definition 3.3 (Difference of Deng Entropy Between Two HO-FBBPAs).
Let mk

F1
and mk

F2
be two HO-FBBPAs in the frame of discernment

�, where k represents the fractal epoch and satisfies k ⩾ 1. The
Difference of Deng entropy (DHDE) between two HO-FBBPAs is defined
as follows:

DHDE

(
mk
F1
, mk

F2

)
= |HDE

(
mk
F1

)
−HDE

(
mk
F2

)
|. (20)

It should be noted that since HO-FBBPA is a special type of BPA, thus
it can also be calculated using Eq. (10).

Example 4. Suppose that there are two BPAs m1 and m2 in the frame
of discernment � = {A,B, C}:

m1 ∶ m1({A}) = 0.5, m1({B}) = 0.1, m1({C}) = 0.2, m1({A,B, C}) = 0.2;

m2 ∶ m2({A}) = 0.6, m2({B}) = 0.2, m2({C}) = 0.1, m2({A,B, C}) = 0.1,

explore the relationship between the HDE , DHDE and HO-FKL during
the fractal processes, where k represents the epoch of fractal epoches.

From Fig. 5(a), it is clearly noticed the traits of Deng entropy value
during continuous fractal processes. The bars in Fig. 5(a) show the
respective change of m1 and m2 in entropy value in this process, while
the dotted line shows the difference in entropy value between m1 and
m2. This entropy difference can effectively measure the difference in
information between the two systems. Therefore, when the information
difference value converges, it is considered as the best epoch to measure
the discrepancy between the two systems. Specifically, from Table 2,
it can be seen that starting from epoch k = 5, the change of DHDE

are all less than 0.11904881 − 0.112744975 = 0.006303835. Therefore,
the entropy difference is considered to have converged at this point.
As shown in Fig. 5(b), two lines are used to show the trends of
entropy difference value and FBDSKL

(
m1, m2

)
during the continuous

fractal processes. It is also noted that in Fig. 5(b), at the point when
the information discrepancy between the two systems converges, the
divergence between m1 and m2 is obtained:

HO − FKL
(
m5
F1
, m5

F2

)
= 0.04435566.

3.3. A -order fractal-based Kullback–Leibler divergence

Definition 3.4 (A -order Fractal-Based Kullback–Leibler Divergence).
Let m1 and m2 be two BPAs in the frame of discernment �. A -order
fractal-based Kullback–Leibler (O-FKL) divergence of m1 and m2 is
defined as follows:

O-FKL
(
m1, m2

)
=

1

2

⎡
⎢⎢⎢⎢⎢⎣

∑
i m


F1

(
Ai

)
log

(
m
F1
(Ai)√

m
F1
(Ai)×m


F2
(Ai)

)

+
∑

i m

F2

(
Ai

)
log

(
m
F2
(Ai)√

m
F1
(Ai)+m


F2
(Ai)

)

⎤⎥⎥⎥⎥⎥⎦

, (21)

Table 2
Entropy difference and HO-FKL divergence with varying epoch k.

k DHDE value HO-FKL value k DHDE value HO-FKL value

0 0.190013453 0.08157586 6 0.112744975 0.044185718
1 0.431655518 0.063295221 7 0.11031425 0.044034492
2 0.261136243 0.051090441 8 0.109394737 0.044036381
3 0.173590225 0.046509382 9 0.109051903 0.044064025
4 0.134967606 0.044885521 10 0.108925531 0.044082277
5 0.11904881 0.04435566

where  represents the best ideal epoch and satisfies the following
convergence criterion:

DHDE

(
m
F1
, m

F2

)
−DHDE

(
m+1
F1

, m+1
F2

)
< ", (22)

where " is the allowable error.
It is noted that O-FKL is a manifestation of the high order of

fractals after the generalization of FBDSKL, it also satisfies the three
desirable properties of FBDSKL:

[1] Nonnegativity: 0 ⩽ O-FKL(m1, m2).
[2] Nondegeneracy: O-FKL(m1, m2) = 0 if and only if m1 = m2.
[3] Symmetry: O-FKL(m1, m2) = O-FKL(m2, m1).

In Example 4, when the allowable error is set to be 0.001, it can
be observed that DHDE converges at epoch k = 5. In other words,
when  = 5 in Eq. (21), the O-FKL value between m1 and m2 can
be computed for Example 4 as follows:

O-FKL
(
m1, m2

)
= HO-FKL

(
m5
1
, m5

2

)
= 0.04435566.

3.4. Numerical examples and discussions of O-FKL divergence

In this chapter, the proposed O-FKL divergence measure is ana-
lyzed first in Examples 1 and 2, and then some new numerical examples
will be provided to verify the characteristics of O-FKL. Moreover, in
the following examples, the base of the logarithmic function is fixed to
2, and the allowable error " in Eq. (22) is set to 0.001.

Firstly, let us return to Example 1 in Section 3.2, it is easy to obtain

that when � = 0, then � = 0, it obtained that
{
m1 ({A}) = 1

m2 ({B}) = 1
. At this

point, there is no intersection between m1 and m2, so the divergence
between them should be the maximum. As shown in Fig. 6(a), when
� = 0, the proposed O-FKL measure obtains a divergence value of
1, which is the maximum value during the increment of �. According
to the former analysis in Example 1: as � gradually increases, the
conflict between m1 and m2 should decrease continuously to a value
greater than 0 (because there is still some conflict between m1 and
m2). According to Fig. 6(a), the value of proposed O-FKL measure
decreases continuously with the increase of �, and finally ends at
(1, 0.311), which is in line with our expectations.

Then, the proposed O-FKL is calculated for Example 2 and plotted
in Fig. 6(b). In Example 2, it is easy to notice that as � increases, m1

and m2 will become increasingly consistent until they are completely
identical (� = 0.9999). In Fig. 6(b), it is found that the proposed
O-FKL value decreases continuously as � increases, until the diver-
gence measure, which reflects the conflict level, finally becomes 0 when
� = 0.9999. Therefore, in Example 1 and Example 2, both the trend
of conflict and the boundary values are consistent with expectations.
In the remaining content, the performance of the proposed O-FKL

divergence model is demonstrated and analyzed comprehensively with
more examples.

Example 5. Suppose there are two BPAs m1 and m2 in the frame of
discernment � = {A,B}. They are defined with varied � and �:

m1 ∶ m1({A}) = �, m1({B}) = �, m1({A,B}) = 1 − � − �;

m2 ∶ m2({A}) = �, m2({B}) = �, m2({A,B}) = 1 − � − �,

where � and � ranges from [0, 1], respectively.



Expert Systems With Applications 238 (2024) 122297

7

J. Zeng and F. Xiao

Fig. 5. Entropy difference and divergence value in Example 4.

To fulfill the fundamental property of a mass function (in Eq. (4)),
it is straightforward to infer that � and � should abide by the constraint
of � + � ⩽ 1. Based on the observation of Fig. 7(a), it can be seen
that the value of O-FKL is always greater than 0, which satisfies the
nonnegativity property mentioned in Definition 3.4. Moreover, since �

and � are symmetric in this case, the three-dimensional plot of O-FKL

in Fig. 7(a) is symmetric with respect to the plane X + Y = 0. Shown
in Fig. 7(a), the distribution of the O-FKL values with the variation
of � and � is displayed in a two-dimensional plane. It is visually
observed that the O-FKL divergence value is relatively large when
the difference between � and � is large. The definition of m1 and m2 in
Example 5 also illustrates the same pattern: as the difference between �

and � increases, the discrepancy caused by the singleton events A and
B will increase. Therefore, the results in Fig. 7(a) are consistent with
expectations.

Example 6. Suppose there are two BPAs m1 and m2 in the frame
of discernment �. They are defined with varied � ranging from [0, 1].
Additionally, assume E represent a varied event whose length(denoted
by lE) varies from [1, 8] and is defined in Table 3:

m1 ∶ m1({dempster1967upperB}) = �, m1(E) = 1 − �;

m2 ∶ m2({B}) = 0.95, m2(E) = 0.05.

In this example, the variation of proposed O-FKL with respect to
the parameters is shown in Fig. 8. To begin with, Fig. 8(a) presents an
overview of the O-FKL model in three dimensions; while Fig. 8(b)
shows the range of varied parameters � and lE . Based on Figs. 8(a) and
8(b), the distribution range of the values of O-FKL is clearly obtained.
And it is observed that at any time, it satisfies O-FKL(m1, m2) ⩾ 0.
According to Fig. 8(c), the O-FKL value calculated at t = 1 is higher
than those at other values of t. This is because when t = 1, m1 and m2 are
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Fig. 6. O-FKL divergence measure with varied �.

Fig. 7. The proposed O-FKL measure in Example 5.

defined as follows:
{
m1 ∶ m1(B) = �, m1(A) = 1 − �;

m2 ∶ m2(B) = 0.95, m2(A) = 0.05.
At this time,

the event E does not contain any subset containing event B. In other
words, E and B have no intersection at all in this case. So the conflict
value is greater than the conflict value in other cases where there is
an intersection. As lE gradually increases from [2, 8], since E contains
more subsets, the uncertainty becomes greater. Therefore, O-FKL will
also gradually increase. In Fig. 8(d), it is observed that as � increases
gradually from 0 to 0.95, the value of O-FKL gradually decreases.
And in this example, m1 also gradually approaches m2 as � increases.
When � = 0.95, m1 is completely identical to m2, so the divergence value
between them should be 0. Subsequently, as � continues to increase
from 0.95 to 1, the conflict between m1 and m2 increases. So the
divergence value in this interval of [0, 0.95] also increases. Overall, this
example demonstrates that the O-FKL model is applicable to more
complex situations than the previous examples and yields results as
expected.

Example 7. Suppose there are two BPAs m1 and m2 in the frame of
discernment �. Additionally, assume E represent a varied event whose
length(denoted by lE) varies from [1, 8] and is defined in Table 3:

m1 ∶ m1({B}) = 0.05, m1(E) = 0.95;

m2 ∶ m2({B}) = 0.95, m2(E) = 0.05.

To begin with, it is noticed that this example is a specific case
of Fig. 8 under fixed �. As analyzed in Fig. 8(d), when t = 1, the

Table 3
The varied event E in Examples 6 and 7.

lE E

1 A

2 A,B

3 A,B, C

4 A,B, C,D

5 A,B, C,D,E

6 A,B, C,D,E, F

7 A,B, C,D,E, F ,G

8 A,B, C,D,E, F ,G,H

following equations are obtained:
{
m1 ∶ m1(B) = 0.05, m1(A) = 0.95;

m2 ∶ m2(B) = 0.95, m2(A) = 0.05.
At this time, the conflict between m1 and m2 is the highest. When t = 2,

we have

{
m1 ∶ m1(B) = 0.05, m1(A) = 0.95;

m2 ∶ m2(B) = 0.95, m2(A) = 0.05.
Because m1 and m2

contain events with intersection, the conflict value in this case (t = 2)
is smaller than that at t = 1. Subsequently, as t gradually increases
from 2 to 8, the subsets contained in event E set become increasingly
more from Table 3, but only event B can intersect with E. Thus, the
uncertainty between m1 and m2 will increase. According to Fig. 9, both
BJS and B divergence produce results that conflict with intuition:
their divergence values remain unchanged. For FBDSKL and proposed
O-FKL measures, their trends are consistent with our analysis of
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Fig. 8. The proposed O-FKL measure in Example 6.

Fig. 9. Divergence measure with varied E in Example 7.

Example 7 above. Next, in subsequent classification applications, it
is needed to further compare and analyze the characteristics of the
results obtained by the two methods (FBDSKL and proposed O-FKL)

in order to demonstrate the importance of the process of seeking
higher-order .

4. A novel o-FKL-based multi-source data fusion algorithm

This section applies the O-FKL-based divergence measure to multi-
source data fusion. Thus, a O-FKL-based multi-source data fusion
(O-FKL-MSDF) is proposed. Firstly, the main steps of the O-FKL-
MSDF algorithm are illustrated. Then, the computational complexity is
analyzed in comparison with other algorithms.

4.1. Main steps of o-FKL-MSDF

In this section, the detailed steps of the O-FKL-MSDF algorithm
is presented. Then, the corresponding pseudocode is provided in Al-
gorithm 1. To facilitate intuitive understanding, the entire algorithm
process is also presented in the form of a flowchart in Fig. 10.

Step 1 Consider N independent BPAs, each containing n mutually
exclusive events. To measure the similarity between two BPAs
mi and mj (i, j = 1, 2,… , N), the proposed O-FKL divergence
measure (in Eq. (21)) is implemented. And the divergence value
obtained is utilized as an element in constructing the conflict
measure matrix (CMM). The CMM is defined as:

CMM =

⎡
⎢⎢⎢⎢⎣

0 O-FKL12 ⋯ O-FKL1N

O-FKL21 0 ⋯ O-FKL2N

⋮ ⋮ ⋱ ⋮

O-FKLN1 O-FKLN2 ⋯ 0

⎤
⎥⎥⎥⎥⎦
. (23)
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Fig. 10. The flowchart of O-FKL-MSDF algorithm.

Step 2 Subsequently, a normalization method is applied to construct a
similarity measure matrix (SMM).

SMM =

⎡
⎢⎢⎢⎢⎣

1 S12 ⋯ S1N

S21 1 ⋯ S2N

⋮ ⋮ ⋱ ⋮

SN1 SN2 ⋯ 1

⎤
⎥⎥⎥⎥⎦
, (24)

where Sij =
max

(
O-FKLij

)
−O-FKLij

max
(
O-FKLij

)
−min

(
O-FKLij

) and the diagonal el-

ement Sii is assigned a constant value of 1 to represent the
self-similarity of a BPA itself.

Step 3 The supporting value Sup(mi) of a BPA is calculated by sum-
ming up the support values that other BPAs hold for it in SMM.

Mathematically, it is defined as:

Sup
(
mi

)
=

N∑
j=1,j≠i

eSij . (25)

Step 4 Once the total supporting value Sup
(
mi

)
of each BPA has been

calculated, the credit value Crdi of each BPA is obtained by
normalizing the supporting values with respect to the sum of
all supporting values:

Crdi =
Sup

(
mi

)
∑N

i=1 Sup
(
mi

) . (26)
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Step 5 Every BPA is updated using the normalized supporting value
Crdi, and an averaged BPA m̃ is obtained by weighted averaging
of these normalized BPAs mi:

m̃ =

N∑
i=1

(
Crdi × mi

)
. (27)

Step 6 The averaged BPA m̃ is further combined N − 1 times using
Dempster’s combination rule, resulting in the final combined
belief Fin (m̃):

F in
(
m̃
)
=
((((

m̃ ⊕ m̃
)
1
⊕ m̃

)
2
⊕ ...

)
N−2

⊕ m̃
)
N−1

. (28)

Algorithm 1: Pseudocode procedure for O-FKL-MSDF.

Input: A set of N BPAs  =
{
m1, m2, ..., mN

}
(each BPA

contains n mutually exclusive events)
Output: The supported event based on fusion results

1 for i ← 1 to N do
2 for j ← 1 to N do
3 Calculate the O-FKL divergence between mi and mj

using Eq. (21);
4 end

5 end
6 Construct the conflict measure matrix CMM using Eq. (23);
7 Compute the similarity measure matrix SMM using Eq. (24);
8 for i ← 1 to N do
9 Calculate the support Supi of each BPA using Eq. (25);
10 end
11 for i ← 1 to N do
12 Normalize Supi into credibility weights Crdi using Eq. (26);
13 end
14 for i ← 1 to N do
15 Compute the average of the input BPAs using Crdi weights

to obtain m̃ based on Eq. (27);
16 end
17 for i ← 1 to N − 1 do
18 Combine m̃ with itself N − 1 times using Dempster’s method

to obtain F in
(
m̃
)
based on Eq. (28);

19 end
20 Select the target event Ak (1 ⩽ k ⩽ n) with the highest

singleton-supporting value from F in
(
m̃
)
using Eq. (29);

Step 7 The target event Ak (1 ⩽ k ⩽ n) is chosen based on the highest
supporting value in F in

(
m̃
)
, which is given by:

Ak ← max
1⩽i⩽n

{
F in

(
m̃
(
Ai

))}
. (29)

4.2. Computational complexity analysis of o-FKL-MSDF

In this section, time and space complexity of each step in the
proposed O-FKL-MSDF method is first analyzed. Furthermore, the
proposed algorithm is compared with other classical multi-source data
fusion algorithms in the computational complexity.

Firstly, a detailed analysis of the computational complexity of the
proposed O-FKL-MSDF algorithm is provided in Table 4. In Step 1,
the CMM is constructed by calculating the O-FKL divergence between
each pair of BPAs. There are N2 elements in the CMM. And in each
process of O-FKL algorithm, it is executed at least  times in Eq. (21).
Thus, this step results in the time complexity of (N2) × ( × 2n)

and the space complexity of (N2) × (2n). In Step 2, the CMM is
transformed into an SMM, which takes up the time complexity of
(N2) and the space complexity of (N2) × (2n). Step 3 computes
the total supporting value of each BPA, and has the time complexity of
(N2) and the space complexity of (N). In Step 4, the credit value of
each BPA is computed by normalizing the supporting obtained in the
last step, and consumes (N) in time complexity and (N) in space

complexity. Step 5 averages all the BPAs to obtain m̃, which has the
time complexity of (N) and the space complexity of (1) × (2n).
Finally, in Step 6, Dempster’s rule (in Eq. (7)) is applied n − 1 times.
So this consumes (N) × (2n) in time complexity and (1) × (2n)

in space complexity. Therefore, the overall time complexity and space
complexity of O-FKL-MSDF algorithm are (N2) × ( × 2n) and
(N2) × (2n), respectively.

In the following, a comprehensive computational complexity anal-
ysis for the other classical multi-source fusion algorithms, which are
introduced in Section 2, is discussed and summarized in Table 5. This
analysis will allow us to better understand the strengths and weaknesses
of each algorithm, and to evaluate the performance of the proposed
method in practical applications. First, one advantage of the Dempster’s
combination rule based multi-source fusion algorithm (DCR-MSDF) is
its low computational complexity, with a time complexity of (N) ×

(2n) and a space complexity of (2n). This is because it does not
require the construction of a matrix like CMM or SMM to reflect the
relationship between two BPAs. Establishing a CMM and adopting a
similar algorithmic framework, the BJS-MSDF, B-MSDF, and FBDSKL-
MSDF have time and space complexity of (N2) × (2n). As for the
O-FKL-MSDF algorithm, even though it also utilizes the CMM matrix
to measure the degree of conflict between BPAs, its time complexity
is affected by  due to the high-order fractal iteration in O-FKL.
Therefore, the time complexity of O-FKL-MSDF algorithm can be
expressed as (N2) × ( × 2n). As for its space complexity, because
there is no need to store all HO-FBBPAs during the iteration process,
the space complexity of the proposed O-FKL-MSDF algorithm can be
optimized to (N2) × (2n).

Even though the proposed O-FKL-MSDF has a higher time com-
plexity, a more comprehensive analysis of these algorithms is con-
ducted in Sections 5 and 6 to further demonstrate the advantages of
this algorithm.

5. Experiments

In this section, a concrete multi-source data fusion experiment
is conducted using a dataset obtained from Deng et al. (2004). To
compare the proposed O-FKL-MSDF algorithm with existing methods,
the classical Dempster’s combination rule based multi-source fusion
algorithm (DCR-MSDF) (Dempster, 1967) is firstly considered, and the
divergence-based multi-source fusion algorithms are taken into consid-
eration. They include BJS-MSDF (Xiao, 2019), B-MSDF (Xiao, 2020),
and FBDSKL-MSDF (Zeng & Xiao, 2023), which are introduced in
Section 2. In the process of utilizing the proposed O-FKL-MSDF algo-
rithm, based on the detailed steps given in Section 4, the intermediate
results are provided. Furthermore, a sensitivity analysis is performed
on these algorithms in order to verify their robustness.

5.1. Problem statement

Suppose the frame of discernment � contains three mutually ex-
clusive and exhaustive hypotheses, {A}, {B}, and {C}, which are
independent of each other. Assume there are five BPAs m1, m2, m3, m4,
and m5 defined on this discernment � and are shown in Table 6.

5.2. Implementation of o-FKL-MSDF algorithm

Step 1 The CMM is constructed according to the proposed O-FKL
measure, and the resulting matrix is presented as follows::

CMM =

⎡
⎢⎢⎢⎢⎢⎣

0 0.0439 0.0045 0.0111 0.3043

0.0439 0 0.0410 0.0653 0.4282

0.0045 0.0410 0 0.0038 0.3176

0.0111 0.0653 0.0038 0 0.3653

0.3043 0.4282 0.3176 0.3653 0

⎤
⎥⎥⎥⎥⎥⎦

.
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Table 4
Detailed computational analysis of O-FKL-MSDF algorithm.

Steps Time complexity Space complexity Description

Step 1 (N2) × ( × 2n) (N2) × (2n) Construct the CMM using the O-FKL measure
Step 2 (N2) (N2) × (2n) Transform CMM into SMM
Step 3 (N2) (N) Compute the total supporting value of each BPA
Step 4 (N) (N) Assign credit values to each BPA by normalizing the supporting values
Step 5 (N) (1) × (2n) Combine the BPAs into m̃ by computing the weighted average using the allocated credit values.
Step 6 (N) × (2n) (1) × (2n) Combine the BPAs m̃ using Dempster’s rule to obtain the final fused BPA, F in

(
m̃
)
.

Overall (N2) × ( × 2n) (N2) × (2n) Computational complexity

Notations:
N ∶ represents the number of BPAs to be fused.
n ∶ represents the number of exclusive events in the frame of discernment �.

Table 5
Comparison of computational complexity across different algorithms.

Algorithm Time complexity Space complexity

DCR-MSDF (Dempster, 1967) (N) × (2n)  (2n)

BJS-MSDF (Xiao, 2019) (N2) × (2n) (N2) × (2n)

B-MSDF (Xiao, 2020) (N2) × (2n) (N2) × (2n)

FBDSKL-MSDF (Zeng & Xiao, 2023) (N2) × (2n) (N2) × (2n)

O-FKL-MSDF (N2) × ( × 2n) (N2) × (2n)

Table 6
Initial BPAs with their belief values.

BPA {A} {B} {C} {A,C}

m1 0.55 0.15 0.15 0.15
m2 0.56 0.04 0.01 0.39
m3 0.60 0.10 0.20 0.10
m4 0.60 0.09 0.11 0.20
m5 0.01 0.25 0.65 0.09

Step 2 The constructed CMM above is then converted into an SMM as

follows:

SMM =

⎡⎢⎢⎢⎢⎢⎣

1 0.9056 0.9984 0.9828 0.2920

0.9056 1 0.9123 0.8552 0.0000

0.9984 0.9123 1 1.0000 0.2605

0.9828 0.8552 1.0000 1 0.1483

0.2920 0.0000 0.2605 0.1483 1

⎤⎥⎥⎥⎥⎥⎦

.

Step 3 The sum of supporting values for each BPA is calculated as

follows:

Sup
(
m1

)
= 9.1983,

Sup
(
m2

)
= 8.3151,

Sup
(
m3

)
= 9.2197,

Sup
(
m4

)
= 8.9018,

Sup
(
m5

)
= 4.7965.

Step 4 The sum supporting values are then normalized to obtain credit

weights for each BPA as follows:

Crd
(
m1

)
= 0.2275,

Crd
(
m2

)
= 0.2057,

Crd
(
m3

)
= 0.2280,

Crd
(
m4

)
= 0.2202,

Crd
(
m5

)
= 0.1186.

Step 5 The initial BPAs are averaged to generate m̃ as follows:

m̃ ({A}) = 0.5105,

m̃ ({B}) = 0.1146,

m̃ ({C}) = 0.1831,

m̃ ({A,C}) = 0.1918.

Table 7
Recognition results using different fusion algorithms (in %).

Method {A} {B} {C} {A,C} Target

DCR-MSDF (Dempster, 1967) 81.78 0.03 17.96 0.23 A

BJS-MSDF (Xiao, 2019) 95.19 0.01 4.66 0.15 A

B-MSDF (Xiao, 2020) 94.83 0.02 5.02 0.14 A

FBDSKL-MSDF (Zeng & Xiao, 2023) 95.12 0.01 4.72 0.15 A

O-FKL-MSDF 95.83 0.01 4.02 0.15 A

Fig. 11. Sensitivity analysis generated by different methods.

Step 6 The averaged BPA m̃ is then combined n−1 times using Demp-
ster’s rule to obtain the final answer F in

(
m̃
)
, which is presented

in Fig. 11 and Table 7.
Step 7 The target event A is selected.

In Table 7, it can be observed that event A is identified as the target
with recognition values generated by O-FKL-MSDF algorithm and the
other four baseline multi-source algorithms.

Specifically, DCR-MSDF method yields a relatively low belief value
of 81.78% for the target A among the five methods. This result may
be attributed to the highly conflicting BPA m5, which results in a
lower belief value for A. However, DCR-MSDF method is not capable
of properly handling highly conflicting BPAs. As for the belief-based
divergence algorithms, BJS-MSDF andB-MSDF recognized the target A
with recognition values of 95.19% and 94.83%, respectively. However,
as shown in Examples 1 and 2, their performance may be limited in
certain situations. On the other hand, the proposed FBDSKL-MSDF
algorithm recognized the target A with the highest belief value of
95.12%. It should be noted, however, that only one fractal itera-
tion may not fully demonstrate the advantages of the fractal method.
Therefore, in the O-FKL-MSDF algorithm, a higher order can better
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Fig. 12. Sensitivity analysis results of different fusion methods. (a) Performance comparison: Dempster vs. O-FKL-MSDF. (b) Performance comparison: BJS vs. O-FKL-MSDF.
(c) Performance comparison: B vs. O-FKL-MSDF. (d) Performance comparison: FBDSKL vs. O-FKL-MSDF.

Table 8
Comparison of recognition rates and variances among different fusion methods.

Method Mean (%) Variance (×10−3) Target

DCR-MSDF (Dempster, 1967) 81.63 1.3589 A

BJS-MSDF (Xiao, 2019) 94.98 0.1371 A

B-MSDF (Xiao, 2020) 94.61 0.1516 A

FBDSKL-MSDF (Zeng & Xiao, 2023) 94.91 0.1414 A

O-FKL-MSDF 95.61 0.1144 A

reveal the relationships between BPAs. This results in a recognition
value of 95.83%, which is the highest among all the methods. The
recognition values are also visually presented in Fig. 11. The figure
indicates that O-FKL-MSDF algorithm can effectively manage highly
conflicting data and precisely identify the correct target in multi-source
data fusion.

5.3. Sensitivity analysis

In this section, a sensitivity analysis is conducted to examine the
superiority and robustness of the proposed O-FKL-MSDF method. To
accomplish this sensitivity analysis, a random fluctuation error with
a range of [−0.1, 0.1] is defined for each focal element of m1. After
adding noise to all focal elements of m1, it is then normalized. Then,
the recognition accuracy of target {A} is compared among DCR-MSDF,
divergence-based fusion algorithms (including BJS-MSDF, B-MSDF,
and FBDSKL-MSDF), and our proposed O-FKL-MSDF method. To
eliminate experimental randomness and further verify the robustness
of the model, we repeat the experiment independently 100 times and
summarize the final results in Fig. 12.

From Fig. 12(a), a comparison between the proposed O-FKL-
MSDF algorithm and DCR-MSDF algorithm is made. It can be observed
that DCR-MSDF method mostly focuses on a recognition rate rang-
ing from 70% to 85%, and is greatly affected by noise. According

to Table 8, it can also be seen that the average recognition rate
and variance of DCR-MSDF method in this experiment are 81.63%
and 1.3589 × 10−3, respectively, which differs significantly from the
results of other methods. This is because the Dempster’s classic al-
gorithm is easily affected by conflicting BPAs in multi-source data
fusion. However, abnormal samples are common in practical appli-
cations, and using DCR-MSDF method may significantly affect the
results in such cases. As for the divergence-based algorithms, shown
in Fig. 12(b), (c), and (d), it can be observed that the results of
the proposed O-FKL-MSDF algorithm show significant improvement
compared to BJS-MSDF, B-MSDF, and FBDSKL-MSDF algorithms. In
Table 8, the average recognition rates obtained by BJS-MSDF,B-MSDF,
FBDSKL-MSDF and proposed O-FKL-MSDF are 94.98%, 94.61%,
94.91% and 95.61%, respectively. Meanwhile, the variances of these
methods’ recognition rates (10−3) during the experiment are 0.1371,
0.1516, 0.1414 and 0.1144, respectively. In terms of average recogni-
tion rate, O-FKL-MSDF outperforms other divergence-based methods
by about 0.5% to 1%, and the significant decrease in variance also
indicates that the method has stronger robustness compared to other
methods.

In general, the O-FKL-MSDF algorithm outperformed other al-
gorithms in terms of average recognition rate and stability in this
sensitivity analysis experiment.

6. Application

In recent years, pattern classification has attracted significant at-
tention (Ko & Koo, 2023; Liu, Fu et al., 2022; Liu et al., 2021; Xiao,
Cao et al., 2022; Xiao, Wen et al., 2022), as it serves as a benchmark
for evaluating the performance and effectiveness of various methods in
tackling complex problems. To showcase the practical applicability and
robustness of the proposed O-FKL-MSDF algorithm, this section fo-
cuses on its application to classification tasks using real-world datasets,
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Fig. 13. The flowchart of experiment process.

Table 9
Dataset information.

Dataset Classes number Instances number Attributes number

Iris 3 150 4
Seed 3 210 7
Wine 3 178 13
Breast Cancer 2 569 32
Skin 2 245057 3

comparing its performance against both classical DCR-MSDF (Demp-
ster, 1967) and divergence-based algorithms, such as BJS-MSDF (Xiao,
2019),B-MSDF (Xiao, 2020), and FBDSKL-MSDF (Zeng & Xiao, 2023).
By doing so, the strengths of the proposed O-FKL-MSDF algorithm
are highlighted in addressing complex classification problems, further
substantiating its potential for real-world applications.

6.1. Experiment design and implementation

Firstly, to demonstrate the robustness and versatility of the pro-
posed O-FKL-MSDF algorithm, five diverse datasets, each of varying
complexity and from different fields, are assembled. These datasets
are drawn from the UCI repository,1 and comprised the Iris, Seeds,
Wine, and Breast Cancer Wisconsin (Diagnostic) datasets. Importantly,
the Skin dataset is incorporated into the study. With an impressive
total of 245 057 instances, this dataset serves as a benchmark for
testing the scalability of the algorithm, thus enhancing the reliability
and generalizability of the results. The datasets also exhibit a wide
range of feature dimensions, reflecting the diversity in complexity. The
characteristics of these datasets are summarized in Table 9.

In the experiment, for each type in a dataset, 40% of the sam-
ples from each type are randomly selected as the test set, while the
remaining 60% is used as the training set. As shown in Fig. 13, the
values of each sample can be converted into a BPA. For the training
dataset, the number of attributes p can generate p Gaussian models.
In the process of recognizing each sample in the test set, each trained

1 https://archive.ics.uci.edu/ml/datasets/.

Gaussian model converts each attribute of a test sample into a BPA.
Through a specific multi-source data fusion algorithm, these BPAs can
be fused to generate the final decision result. Therefore, the recognition
rate can be calculated by confirming whether each sample is classified
successfully. This process is repeated 100 times, with the training set
and test set randomly reselected in each independent experiment.

To compare the practical application ability of the algorithms
in classification tasks, DCR-MSDF, classic divergence-based methods
(BJS-MSDF, B-MSDF, and FBDSKL-MSDF), and the proposed O-
FKL-MSDF algorithm are selected for result comparison. The weighted
average recognition rate, denoted as Accuracy, is calculated as follows:

Accuracy =

T∑
j=1

Accuracyj ×
nj

N
, (30)

where T represents the total number of types, Accuracyj denotes the
recognition rate for type j, nj denotes the number of samples for type
j, and N denotes the total number of samples. This formula provides
a generalizable way to calculate the overall recognition rate across
different types within a dataset.

In Fig. 14, the variations in recognition rates of DCR-MSDF, classic
divergence-based methods (BJS-MSDF, B-MSDF, and FBDSKL-MSDF),
and the proposed O-FKL-MSDF algorithm across 100 independent
experiments on the five datasets can be visually observed. From the
characteristics of the datasets, it is observed that the Iris dataset gen-
erally yields higher recognition rates than the other four datasets. This
may be attributed to its fewer features, as shown in Table 9, which
reduces complexity and potential interference from anomalous samples.
For the proposed O-FKL-MSDF algorithm, it demonstrates relatively
high recognition rates on all five datasets, with the rates exceeding 90%
in most independent experiments.

The mean recognition rates and corresponding variances of five
fusion algorithms across five datasets are detailed in Tables 10 and
11, providing a comprehensive perspective on the performance and
stability of each algorithm over 100 independent experiments. Among
the algorithms, Dempster’s combination rule multi-source data fusion
(DCR-MSDF) is included for comparison. It is observed that the pro-
posed O-FKL-MSDF algorithm consistently yields superior recogni-
tion rates, thereby outperforming the other fusion algorithms across

https://archive.ics.uci.edu/ml/datasets/
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Fig. 14. Recognition rates generated by fusion algorithms on different datasets. (a) Application performance on Iris dataset. (b) Application performance on seed dataset. (c)
Application performance on wine dataset. (d) Application performance on Breast Cancer Wisconsin dataset. (e) Application performance on Skin dataset.

Table 10
Comparison of mean recognition rates (in %) for different fusion algorithms on five
datasets.

Method Iris Seed Wine Breast cancer Skin

DCR-MSDF 90.56 88.37 90.52 92.11 84.06
BJS-MSDF 94.53 88.67 89.75 91.96 85.40
B-MSDF 89.00 89.32 90.38 91.51 81.97
FBDSKL-MSDF 95.20 89.32 91.67 92.38 85.62
O-FKL-MSDF 95.33 90.62 92.37 92.98 86.56

all datasets. Specifically, the O-FKL-MSDF algorithm attained mean
recognition rates of 95.33%, 90.62%, 92.37%, 92.98%, and 86.56%
on the Iris, Seed, Wine, Breast cancer, and Skin datasets, respectively.
This superior performance over the other four fusion methods is a
clear indication of the enhanced recognition capability of the proposed
O-FKL-MSDF algorithm.

With an overview of the comparative performance of the O-FKL-
MSDF algorithm with the initial four fusion methods (DCR-MSDF,
BJS-MSDF, B-MSDF, and FBDSKL-MSDF) in Table 10, it is appar-
ent that the proposed O-FKL-MSDF algorithm offers a considerable
enhancement in recognition rates across all datasets. This clear-cut
advantage sets the stage for a more focused comparison with the

Table 11
Comparison of variances (in units of 10−4) for different fusion algorithms on five
datasets.

Method Iris Seed Wine Breast cancer Skin

DCR-MSDF 16.10 13.69 9.21 3.63 3.95
BJS-MSDF 12.51 16.34 19.88 3.97 3.26
B-MSDF 25.38 16.13 19.20 5.02 4.53
FBDSKL-MSDF 11.94 20.45 14.72 4.12 3.70
O-FKL-MSDF 15.91 17.41 16.25 4.08 3.47

FBDSKL-MSDF algorithm. Upon a more focused comparison, it is
noted that the O-FKL-MSDF algorithm offers a marginal improvement
over the FBDSKL-MSDF on the Iris dataset, with an increase in the
mean recognition rate of just 0.13%. However, on the Seed, Wine,
Breast cancer, and Skin datasets, the improvements in recognition rates
are considerably more pronounced, reaching 1.3%, 0.7%, 0.6%, and
0.94%, respectively.

In addition to its impressive recognition rates, the O-FKL-MSDF
algorithm also demonstrates a relatively stable performance as evi-
denced by the small variances observed over 100 epochs in Table 11.
This suggests a level of robustness in the proposed method, indicating
that it can consistently deliver high-quality results across different
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Fig. 15. Heatmap of p-values from Welch’s t-test based on application results.

applications. These findings intuitively underscore the superiority and
robustness of the O-FKL-MSDF algorithm in practical classification
applications.

6.2. Statistical analysis

To statistically substantiate the superior performance of our
O-FKL-MSDF algorithm, as suggested by the higher recognition rates
and low variances observed in Section 6.1, the Welch’s t-test is con-
ducted. The t-test is applied to the recognition rates obtained from the
100 independent experiments performed on each dataset using each
fusion algorithm, as illustrated in Fig. 14. Note that standard t-tests
assume equal variances in the populations from which samples are
drawn. However, from Table 11, it is evident that there are variations in
the variances of the results obtained from different fusion algorithms.
Therefore, the Welch’s t-test is opted, which accommodates unequal
variances and offers a more reliable option when the assumption of
equal variances is violated (Welch, 1947).

For each dataset, a baseline method is selected and the Welch’s t-
test is conducted between the recognition rates of this baseline method
and those of our O-FKL-MSDF algorithm. The resultant p-value is
examined, with a value less than 0.05 indicating a statistically signifi-
cant difference between the recognition rates of the two methods, at a
confidence level of 95% or higher, as established by Welch (1947). Fur-
thermore, the smaller the p-value, the more significant this difference.
Accordingly, the p-values are presented and visualized in a heatmap,
depicted in Fig. 15.

From Fig. 15, those p-values less than 0.05 are colored on a gra-
dient from white to dark blue, whereas p-values greater than 0.05 are
represented on a gradient from white to dark red. It is clear from the
heatmap that out of the 20 t-tests conducted to compare our method
with four baseline methods across five datasets, only three result in p-
values greater than 0.05. Three tests generated p-values less than 0.05
but greater than 0.01, indicating a confidence level of at least 95%
that there is a significant difference in the recognition rates of the two
methods across the 100 independent experiments. The remaining 14
tests yield p-values far less than 0.01, suggesting a confidence level

exceeding 99% that a significant difference exists in the recognition
rates of the two methods over 100 independent experiments. In addi-
tion, when focusing specifically on the Skin dataset, which comprises
245 057 instances and thus provides a robust verification for the re-
liability and generalizability of our results, even the highest p-value
obtained when comparing our proposed O-FKL-MSDF algorithm with
the four baselines is a mere 5.34 × 10−4. This further underscores the
superior recognition rate and convincing performance of our method
on this broadly applicable dataset.

6.3. Error analysis

In Section 6.2, the superiority in recognition rates and robustness of
the proposed O-FKL-MSDF algorithm has been statistically validated
using Welch’s t-test. This section delves further into the behavior of
the proposed O-FKL-MSDF algorithm by investigating its recognition
patterns and associated errors. This analysis aims to uncover the un-
derlying challenges that might influence the algorithm’s performance,
hence identifying potential areas for further refinement.

As seen in Table 10 from Section 6.1, while the proposed
O-FKL-MSDF algorithm exhibits superior performance across various
datasets, the average recognition rate over 100 independent experi-
ments on the Skin dataset is 86.56%. Even though this rate represents
a significant improvement over other baseline algorithms, it is compar-
atively lower than the recognition rates achieved on other datasets, as
can be visually observed from Fig. 14 in Section 6.1. This discrepancy
suggests that there may be potential for further refining the proposed
algorithm to improve its performance on this particular dataset. The
Skin dataset is composed of two types, with 194,198 samples for type
1 and 50,859 samples for type 2. For each type, 40% of the samples are
randomly selected for testing during each run of the experiment. The
recognition rates for each type are then calculated, and the weighted
average recognition rate, denoted by Accuracy, is computed using the
formula given in Eq. (30). After 100 such independent experiments, the
final weighted recognition rate is found to be 86.56%. Understanding
the recognition rates of each type could help uncover the factors con-
tributing to the comparatively lower overall recognition rate observed
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Fig. 16. Comparative analysis of recognition rates for the Skin dataset.

in this dataset, thereby providing insights for the further refinement of
the algorithm.

As depicted in Fig. 16, the recognition rates of Type 1, Type 2, and
the weighted recognition rate calculated using Eq. (30) across the 100
independent experiments are presented. It is evident from the figure
that the recognition rate for Type 1 remains consistently high, almost
reaching a 100% recognition rate. However, the recognition rate for
Type 2 is considerably lower, hovering around 45% with noticeable
fluctuations. These discrepancies in recognition rates are visually repre-
sented in the figure using a colored area chart. Upon statistical analysis,
the recognition rates for Type 1 and Type 2 across the 100 experiments
are found to be 98.93% and 38.59%, respectively. The final weighted
recognition rate, computed using Eq. (30), is 86.56%.

In an attempt to understand the underlying causes for the discrepan-
cies in recognition rates between Type 1 and Type 2, an analysis of the
individual attributes within the Skin dataset is conducted. As depicted
in Fig. 17, the box plots for Attributes 1, 2, and 3 are presented,
comparing Classification Types 1 and 2. From the box plots, it is
observed that Attributes 1 and 2 do not show substantial differences
between the two types, with Type 1’s value range almost entirely en-
compassing that of Type 2. This overlap potentially leads to confusion
and ambiguity in classification, as Type 2 may be misclassified as Type
1. This observation aligns with the phenomenon seen in Fig. 16, where
Type 2 has a considerably lower recognition rate. In contrast, Attribute
3 demonstrates a distinct separation between the types, indicating its
significance in differentiating between Types 1 and 2.

A further analysis of different attribute combinations on recognition
error rates is further explored and presented in Fig. 18. In this figure,
the average error rates over 100 independent experiments are shown
for four distinct attribute combinations: Attributes 1, 2, 3; Attributes 1,
2; Attributes 1, 3; and Attributes 2, 3. For each combination, the error
rates for Type 1, Type 2, and the weighted error rate are provided. The
analysis reveals that the combination of Attributes 1 and 2 leads to
the highest error rate for Type 2, reaching 74.36%. On the other hand,
the combinations of Attributes 1 and 3 or Attributes 2 and 3 result in
a significant reduction in the error rate for Type 2, falling to approx-
imately 29.36% and 29.46%, respectively. Furthermore, the weighted
error rates for these two combinations are 12.23% and 11.64%, respec-
tively, lower than the 13.44% error rate when all three attributes are
considered.

An in-depth examination of the Skin dataset’s features reveals the
underlying errors made by the algorithm. A significant factor contribut-
ing to these errors is the algorithm’s treatment of attributes. Specifi-
cally, the attributes that contribute less to type classification are not

assigned lower weights, highlighting an area of potential improvement
in the weighting strategy. An examination of Figs. 17 and 18 reveals
that Attributes 1 and 2 are less effective in distinguishing between
Types 1 and 2, whereas Attribute 3 shows a clear separation between
the types. This finding exposes a limitation in the current approach.
While our algorithm is designed to effectively handle BPA conflicts, it
assumes that noisy BPAs are in the minority. In the case of the Skin
dataset, Attributes 1 and 2 are not assigned lower weights, even though
they are less effective in distinguishing the two types. Consequently,
when all three attributes are combined, the decision-making process
is disproportionately influenced by the less classification-effective at-
tributes, diminishing the impact of Attribute 3’s BPA, thus leading to
lower recognition rates. This analysis underscores the need to recognize
the unique characteristics of individual attributes in the fusion process.
Specifically, it emphasizes the importance of assessing the contribution
of each attribute to classification, taking into account how effectively
they differentiate between types. By adjusting the weighting strategy to
reflect these insights, O-FKL-MSDF algorithm’s performance could be
further fine-tuned. Such refinement could lead to enhanced robustness
and effectiveness in handling complex multi-source data fusion tasks,
ensuring that the algorithm leverages the most informative attributes
for improved recognition rates.

In summary, the proposed O-FKL-MSDF algorithm exhibited out-
standing performance in practical classification tasks on various real-
world datasets. Its superiority is statistically validated using Welch’s
t-test. Despite some challenges, the algorithm showed promising scala-
bility and adaptability, highlighting its potential for complex real-world
pattern classification applications.

7. Conclusion

In conclusion, this study proposes a novel divergence measure, the
 order fractal-based Kullback–Leibler (O-FKL) divergence, which
incorporates a high order fractal preprocessing method into the tra-
ditional KL divergence. The primary contribution of this study is the
determination of the optimal fractal epoch by studying the convergence
of the Deng entropy difference between two BPA systems. In Section 3,
the proposed O-FKL divergence model is thoroughly investigated
through several numerical examples to demonstrate its desirable prop-
erties. Based on O-FKL divergence, the O-FKL-MSDF algorithm is
developed for multi-source data fusion. In Section 5, the superiority
and robustness of the model are validated through experiments and
a sensitivity analysis. Finally, in Section 6, the proposed O-FKL-
MSDF algorithm is tested on five datasets with different complexities
to demonstrate its recognition accuracy. The results are compared with
those of classical algorithms and divergence-based fusion algorithms
and are verified with improved recognition rates. Moreover, the pro-
posed model is compared and analyzed with the FBDSKL divergence
model in both Sections 5 and 6, demonstrating the necessity of find-
ing higher-order  fractals. In summary, this study provides a new
approach for measuring the conflict between BPAs and contributes to
multi-source data fusion applications.

Despite the demonstrated superiority in terms of accuracy and
robustness of the O-FKL-MSDF algorithm, there are still areas for im-
provement: As discussed in Section 4.2, the time and space complexities
of the O-FKL-MSDF algorithm can reach (N2)×(×2n) and (N2)×

(2n), respectively. The exponential nature of these complexities is a
critical concern, as it may lead to considerable computational costs
when dealing with a large number of BPAs.

In view of the limitations of the proposed O-FKL-MSDF algorithm,
future work should primarily focus on enhancing its efficiency. First,
with respect to time complexity, constructing the CMM is the most
time-consuming aspect of the algorithm, as each element in the CMM
requires divergence computation. To improve calculation efficiency, fu-
ture research could investigate the potential of combining the proposed
O-FKL measure with quantum computing for parallel processing.
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Fig. 17. Comparison of Attributes between Types 1 and 2 in three attributes.

Fig. 18. Comparative analysis of recognition error rates for different attribute
combinations in the Skin dataset.

Furthermore, with regards to space complexity, the redundancy in
the matrix structures of CMM and SMM due to the duplication of
original elements should be addressed. An optimized data structure
could be proposed to address this issue by storing divergence values
more efficiently. In addition, as indicated in Table 5, the time and space
complexities of existing belief divergence algorithms, including BJS, B
and FBDSKL divergence, all reach (N2)×(2n). Hence, there is room
for optimization in the time complexity of these divergence measures.
However, more importantly, these algorithms are primarily applicable
to the real number domain and may not be suitable for more complex
applications, particularly those involving complex numbers. In future
work, it is a promising orientation to extend the proposed O-FKL

measure to the complex domain, making it a generalized method that
can be applied to both real and complex number domains.
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