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A B S T R A C T

Recently, with the improvement of per-capita income, the number of waste electronic and electrical equipment
(WEEE) has increased significantly. The WEEE return prediction is an essential part of reverse logistics (RL)
due to its helpfulness in decision-making. The traditional prediction methods usually learn from the historical
data of merely a single type of WEEE. However, the prediction tasks of different types of WEEE are relevant to
some extent, the lack of considering their relationships in prediction leads to sub-optimal performance. To this
end, we propose a multi-task learning model, Multi-Time Scale Aware Host Task Preferred Learning model
(MAHOP), to predict return volume by learning from multiple types of WEEE. The work is non-trivial due
to the challenges: (1) Collaborative extraction of multi-time scale features and multi-task common features
from different types of WEEE, (2) fair prediction for every type of WEEE, and (3) Proper usage of common
different time scale features. To tackle these challenges, we first construct a multi-task learning framework with
different towers to learn three common time-scale features from the time series data of all types of WEEE.
Besides, we propose a polling host-task learning strategy and a host-preferred loss. Moreover, we design a more
sharing tower to make the model not overly dependent on some specific time series features. We apply MAHOP
to a WEEE recycling enterprise and conduct extensive experiments to demonstrate that MAHOP outperforms
baseline models, with improved performance and acceptable hyper-parameter sensitivity. To be more specific,
the average prediction error for the fridge, air conditioner, washing machine, and television is about 8% lower
than that of the suboptimal model.

1. Introduction

Nowadays, as the use of electronic equipment becomes more and
more prevailing, the problems and challenges of how to deal with the
waste of electronic and electrical equipment (WEEE) begin into public
view. Considering that WEEE is a non-homogeneous and complex in
terms of materials and components and many of the materials are
highly toxic, we need the methods to process them appropriately. The
traditional recycling methods always have high time cost and expense
costs, and also, they are not fully optimized in various stages of the
industry chain, which may lead to some social issues, such as incon-
venience for people who have to go to designated recycling points to
dispose of their waste. As a result, the reverse logistics (RL) emerges as
the times require (Lehtinen & Poikela, 2006). As the central part of the
research in WEEE RL domains (Islam & Huda, 2018), decision-making
highly depends on the prediction of return volume.
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The RL return prediction belongs to time series prediction. Many

researchers have made a lot of breakthroughs in this domain. There

are two main types of solutions in this field, traditional models, which

contain statistical models as well as machine learning models, and deep

learning methods.

The former includes regression models based on various types of

time series data features (Kelle & Silver, 1989), such as Bayesian-

based (Toktay et al., 2000) and Autoregressive Integrated Moving

Average (ARIMA) (Wang et al., 2012) based models. Although these

methods performed well in some aspects, they are not good at pro-

cessing nonlinear data (Qian & Gao, 2017; Zhang et al., 2023). The

latter use deep neural networks, such as Recurrent Neural Networks

(RNNs), Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,

1997), DeepAR (The combination of RNN and AR) (Salinas et al., 2020),

and Temporal Convolutional Networks (TCN) (Bai et al., 2018) to
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capture the nonlinear data features. Moreover, Zhang et al. (2023) first
considered the multi-time scale features of WEEE in the RL prediction
field and put forward a multi-timescale attention network (MULAN).

These methods only use the historical data of each single WEEE
to predict its future recovery without considering the correlation of
different WEEE prediction tasks. However, the tasks of different types
of WEEE prediction highly correlate with each other; when dealing
with related tasks, the models learning multiple tasks collaboratively
are superior to those only learning for a single task (Standley et al.,
2020; Zhang & Yang, 2021) because the usage of relative tasks will
learn more precise common features by auxiliary data. Moreover, more
types of electronic and electrical equipment are included in WEEE (Di-
rective, 2012) that provide more related auxiliary data. To this end,
we propose a multi-task learning model, Multi-time Scale Aware Host
Task Preferred Learning (MAHOP), for WEEE RL prediction. Our work
is non-trivial due to the following challenges: (1) How to extract multi-
time scale features and multi-task common features collaboratively?
Most of the previous multi-task learning networks do not take time
scale features into consideration and are not suitable for time series
data prediction. (2) How to achieve fair prediction for all tasks? Ex-
isting multi-task learning models focus more on efficiency and overall
performance, usually leading to lower accuracy of a few tasks. (3) How
to use the multiple time scale features probably to avoid the host task
paying more attention to some special time series features?

For the first challenge specifically, we propose a framework to
learn common multi-time scale features, a.k.a. monthly periods, annual
trends, and recent closeness, from time series data of different WEEE.
In the feature extraction phase of the framework, we design three tower
modules to deal with three time-scale features. In the prediction phase
of the framework, each task selectively extracts information from the
different towers because the time series of different WEEE may have
variant dependencies among different time features.

For the second challenge, we design a polling host-task learning
strategy and a host-preferred Loss to achieve a fair prediction for all
types of WEEE. We define the host task as the target task and the guest
task as the task to assist in predicting the host task. It ensures that the
host task keeps the highest speed to learn, and at the same time, all the
guest tasks can find a balance among each other when they are trained
together. Every task can be a host task once and a guest task many
times (when another task is a host task).

For the third challenge, we find that the model is sensitive to
the hyper-parameters for the balance of multiple time series features;
thus, we introduce one more sharing tower containing all time series
data, which can make the model not overly depend on some specific
time series features. Our improved MAHOP can decrease sensitivity
and increase the generalization capability. To distinguish between the
proposed model with and without the additional sharing tower, we
name the model without the tower MAHOP/st.

The MAHOP model can fully use common multi-time scale features
and focus on every host task. Although there have already been some
asymmetry multi-task learning models such as deep asymmetric mul-
titask feature learning (Lee et al., 2018) and temporal probabilistic
asymmetric multi-task learning (Tuan et al., 2019), they still make all
the tasks trained at the same time, rather than the principles of our
model, training different tasks separately and exchanging the role of
each task every time. We show the difference in the characteristics
among STL (single-task learning, i.e., MULAN), MTL (multi-task learn-
ing, i.e., Multi-gate Mixture-of-Experts (MMOE)), normal asymmetry
MTL, and our MAHOP, in Fig. 1 (two tasks learning for instance).

To summarize, the contributions of our work are as follows:

(1) Our model first makes use of the relationships among vari-
ous WEEE historical data for the prediction task. We design
a multi-time scale aware multi-task learning framework for the
WEEE prediction.

(2) Our model extracts multi-time scale features and multi-task
common features collaboratively. We create three towers to
deal with the different time sequences of data, and different
WEEE prediction tasks can extract these features selectively.

(3) We make the first exploration of distinguishing host and
guest tasks in the learning for WEEE RL prediction domain.
We design a Host-preferred Loss to ensure that the host task
keeps the highest speed to learn and that all the guest tasks can
find a balance when they are trained together.

(4) We design a sharing tower to help the model avoid overly
depending on some specific time series features. The sharing
tower can leverage full sequence data to get common time series
features that can improve the model’s generalization.

2. Related works

2.1. Traditional methods in the RL prediction field

Plenty of methods have been put forward to improve the effective-
ness of the prediction model in the RL field. Researchers first solved
this problem by applying various statistical and machine learning meth-
ods. Kelle and Silver (1989) first put forward the regression equations
to predict. After that, Toktay et al. (2000) developed a Bayesian-based
forecasting model, which depended on the assumption that RL recovery
models conformed to a binomial probability distribution. To further in-
crease the precision of the prediction model, Yang and Williams (2009)
created regression equation-based forecasting models. The most recent
machine learning method to deal with this was called Autoregressive
Integrated Moving Average (ARIMA) (Wang et al., 2012). Most of the
traditional methods could solve some prediction problems very well,
but Siami-Namini et al. (2018) got a conclusion through the contrast
experiment that their effect did not compare with deep learning models.

2.2. Deep learning models for time series prediction

In addition to the traditional models, many deep learning methods
also were put into use in the time series analysis field. The earliest
solutions are recurrent neural networks (RNNs) and Long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997), introducing the
gate mechanism based on RNNs. Apart from LSTM, Salinas et al. (2020)
did another improvement to RNN, combining RNN with AR, which was
called DeepAR. Although the cycle structures always perform well in
the time series field, some researchers put forward the other method
based on the convolutional neural network, which is called temporal
convolutional networks (TCN) (Bai et al., 2018). Recently, some people
creatively employed the temporal attention mechanisms to LSTM for
better effect on time period prediction tasks (Hu & Zheng, 2020). In
addition, many studies also used transformer structures for related pre-
dictions of time series (Shen & Wang, 2022; Zhou et al., 2021), which
could efficiently handles extreme long input sequences. Moreover, there
was research that designs a multi-variable time series prediction model
that incorporates transformer structures, Crossformer (Zhang & Yan,
2022), which could handle the dependency among different variables
and had important implications for our task of predicting multiple
categories of WEEE simultaneously. The latest research achievement
in the RL field was a multi-timescale attention network (Zhang et al.,
2023), which first considered the different timescale features in the
specific RL field.

2.3. MTL methods

However, all of the previous methods did not make use of the simi-
larity of the multi-time scale features among different electronic equip-
ment, which contradicted the spirit of the new standard of WEEE (Di-
rective, 2012).
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Fig. 1. The difference among structures of classical prediction models and our MAHOP (its input consists of six parts. Horizontally, it is composed of closeness-sequence,
month-sequence, and year-sequence; while vertically, it is composed of two different kinds of WEEE).

To study the similarity features among different tasks, a lot of multi-
task learning (MTL) structures can be applied to deal with it. The
earliest method was called hard parameter sharing (Caruana, 1993),
followed by the Deep Mixture of Experts (Eigen et al., 2013), a deeper
network as an improvement of the Mixture of Experts (MOE) (Jacobs
et al., 1991). The latest work to refine MOE, Multi-gate Mixture-of-
Experts (MMOE), was made by Ma et al. (2018), which introduced the
multi-gate mechanism. After that, Tang et al. (2020) put forward Cus-
tomized Gate Control (CGC) as well as Progressive Layered Extraction
(PLE) to make further improvements. Some researchers also migrated
the methods commonly used in the field of recommendation systems
and computer vision to the field of time series prediction. Mahmoud
et al. (2020) proposed the MTL model which fused Gated Recur-
rent Units (GRU) and Convolutional Neural Networks (CNN). After
that, Warrier et al. (2022) put forward the MTL methods containing
LSTM networks. In addition to the normal MTL models, many re-
searchers also tried to propose some asymmetry MTL models, such as
Deep Asymmetric Multitask Feature Learning (Deep-AMTFL) (Lee et al.,
2018) and Temporal Probabilistic Asymmetric Multi-Task Learning
(TP-AMTL) (Tuan et al., 2019).

Although there are so many MTL models to deal with the multi-
task learning problems, none of them can directly be applied to the
prediction task of different types of electronic equipment in the RL
field due to the two reasons as follows. For one thing, most of the
previous MTL networks (Ma et al., 2018; Tang et al., 2020) concentrate
on the Computational Vision and Recommendation System field, and
they cannot be directly put into use in the time series. It is because
that they do not make use of the time features in the RL prediction
field. Even for MTL models that apply to the field of time series, they
have not taken into account the multi-time scale characteristics of
RL sequences. For another thing, the final purpose of almost all the
previous MTL models is reducing the time of training, which means
that they place more emphasis on overall performance and efficiency,
rather than improving the prediction accuracy of each individual task.
With such a design purpose, different WEEE predictions in multi-task
learning will inevitably lead to the problem of gradient conflict between
tasks, making it impossible to simultaneously improve the prediction
accuracy of various WEEE, which is not in line with our ultimate goal
in the RL prediction field. As a result, we will propose our new model
in this paper to solve these problems.

2.4. Overall novelty

Compared to the aforementioned methods, our approach has the
following innovative features to address the challenges faced by those
methods. (1) We make use of multi-time scale features when doing the
multi-task learning and create three towers to deal with the different
time sequences of data. (2) We propose the Host-preferred Loss to
distinguish host and guest tasks in order to increase the effect of all of
the prediction tasks. (3) We design a sharing tower to help the model
better evenly depend on each specific time series feature.

3. Preliminaries

3.1. Method applicability

MTL has always been lacking in effective application in the field
of time series. The main reason is that the core of MTL is to process
many relative tasks at the same time and each task has different outputs
to achieve different purposes. However, for most work in the time
series field, we always expect to predict one specific indicator in the
future. And even if many types of data need to be forecast, the most
popular and common way is to predict them separately or to package
all indicators into a high-dimensional vector, instead of considering the
prediction of each indicator as one task of MTL.

For the specific task in this paper, predicting the data of different
WEEE, however, is very suitable for the idea of MTL. We find that
for different electronic equipment, their data series are similar to each
other but not totally the same, so making them train together will
be beneficial for each prediction task. Moreover, we have different
indicators to learn, the return of each WEEE in the future, and at the
same time, the indicators have relationships with each other, which
means we cannot consider them as completely independent tasks or
package them into a vector.

As a result, we do the work to adjust classical MTL methods to some
models that can fit our tasks well in this paper. And the most important
problem to solve is how to make sure that our models behave better
for each single WEEE prediction task, which is introduced in detail in
Section 4.

3.2. Notation definition

We define the notations as follows to describe the problems as well
as our models more clearly (For clarity and conciseness, we will use
HTK to represent the host task, and GTK to represent the guest task in
the following formulations):

• (X)-Y-sequence: We stipulate X ∈ {FD,AC,WM, TV , FAW ,

FAW T } and Y ∈ {year, montℎ, near, full}, which represent the
time series data of fridge, air conditioner, washing machine,
television, first 3 WEEE, and all WEEE in trend window, pe-
riod window, closeness window and the conjunction of these 3
windows (Zhang et al., 2023) respectively.
• X-loss:We stipulateX ∈ {FD,AC,WM, TV ,HTK,GTK}, which
represents the loss of each WEEE prediction task (including the
prediction task of the host task and guest tasks) before calculating
them together to get the final mixloss.
• X-mixloss: We stipulate X ∈ {FD,AC,WM, TV ,HTK}, which
represents the mixloss of each WEEE prediction task (including
the prediction task of the host task). Each time we want to
concentrate on the task of one specific X, we will calculate X-loss
and the loss of the rest guest tasks together, to get X-mixloss.
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Fig. 2. The pre-processing of original data.

3.3. Guest tasks selecting and data pre-processing

According to Fig. 5 in Section 5, we can figure out that the time
series of FD, AC, and WM all show an upward and then downward
trend, while the time series of Tv shows an upward then steady trend,
which means the multi-time scale features of FD, AC, WM are much
more similar to each other compared with TV. On the other hand, the
first three kinds of WEEE data still have some similarities with TV,
which means that the TV return prediction task can learn something
when it is training with the rest three tasks together. As a result, when
we choose TV to be the host task, the guest tasks will be the rest of
WEEE. and when we choose another WEEE to be the host task, the
guest tasks will be the rest of WEEE except TV.

Before we input the data chosen from the datasets, we are supposed
to do some pre-processing of the original data. Initially, we will stan-
dardize the data of each WEEE separately. Secondly, we will select
the year-sequence, month-sequence as well as near-sequence of the
host task from the whole data series, and then we connect them to
the full-sequence. After that, we will repeat the same process for the
rest guest tasks. Eventually, we will conjunction all full-series into a
high-dimensional vector. The complete steps of the data pre-processing
introduced previously are shown in Fig. 2.

4. Methodology

In this section, we first introduce the detailed structures of our two
models, original MAHOP/st and improved MAHOP, in 4.1 and 4.2. Af-
ter that, we explained the principle and implementation of the polling
host-task learning strategy and the Host-preferred Loss algorithm in
4.3. Eventually, we use 4.4 to show the specific algorithm process of
MAHOP.

4.1. Multi-time scale aware host task preferred learning model without
sharing-tower

4.1.1. Overview of the framework
The whole structure of MAHOP/st is shown in Fig. 3, and some

details of the model are also in it.
We can find that our model MAHOP/st uses some ideas and struc-

tures of the Multi-gate Mixture-of-Experts model in general. The input
of the model is a high-dimensional vector, and different dimensions
represent the number of different WEEE. Firstly, the input will be
sliced into 3 time series, near-sequence, month-sequence, and year-
sequence. Then they will transfer to closeness_tower, period_tower,
and trend_tower separately. After that, the outputs of each tower are
fused through different sockets, and the fused results are decoded
by their respective decoders. Eventually, we will get the output and
corresponding loss from each decoder, and calculate all the losses to
the final mixloss.

As we can see from Fig. 3, considering the difference between the
time series data of TV and the other 3 WEEE, the model to predict
TV data is slightly different from other WEEE prediction models. For
one thing, the input of the TV prediction model is FAWT-full-sequence,
while others are FAW-full-sequence. For another, when we choose TV
to be the host task, we need 4 sockets and 4 decoders to calculate the
loss of all WEEE and fuse them to the TV-mixloss. However, for the
other 3 WEEE, they only need 3 sockets and 3 decoders and TV-loss is
not included in the final mixloss.

4.1.2. Details of tower
In the tower layer, the input is the form of a high-dimensional

vector, combined with the time series of the host task and guest
tasks, so the model learns the mutual characteristics of all WEEE.
The different towers only represent that the model will learn from
three different features in this layer: annual synchronization, monthly
synchronization, and recent trends.

Different towers have similar networks, but they are not identical.
It is because the structure of each tower is an LSTM network as
shown in Fig. 3, while the LSTM network of different towers has
various amounts of repeating modules, which is due to the length of
respective input data. In other words, the number of repeating modules
in closeness_tower is consistent with the length of near-sequence, and
the number of repeating modules in period_tower is consistent with
the length of month-sequence, and the same goes for trend_tower. The
calculation process of LSTM is shown below:

⎡
⎢⎢⎣
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⎥⎥⎦
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⎛
⎜⎜⎝

⎡
⎢⎢⎣
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⎡
⎢⎢⎣
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bi
bo

⎤
⎥⎥⎦

⎞
⎟⎟⎠
, (1)

C̃j = tanh
(
WC

[
ℎj−1, xj

]
+ bC

)
, (2)

Cj = fj ∗ Cj−1 + ij ∗ C̃j , (3)

ℎj = oj ∗ tanh
(
Cj

)
. (4)

As we can see, the xj represents all WEEE return data of each day.
Apart from ℎ0, which is a vector randomly initialized at the beginning,
other variables are only intermediate variables. Since the dimensions of
each vector passed into the socket must be the same, we have to make
sure that the outputs of all towers have the same shape. As a result, we
only choose the last ℎj , which is also known as y0, as the output, while
we discard the other ℎj .

4.1.3. Structure of socket
Different WEEE should share the parameter learning of all towers so

that the three towers can fully represent the characteristics of annual
synchronization, monthly synchronization, and recent trends. However,
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Fig. 3. The overall architecture of MAHOP/st.

through sockets, the network of different WEEE can control the at-
tention weight of previous features (annual synchronization, monthly
synchronization, and recent trend) separately, mainly because different
WEEE have different dependencies on each feature.

Firstly, we input the full-sequence to the LSTM, and then we use
the Full Connect Neural Network (FC) to change the corresponding
dimension of the LSTM output into 3, which is the same as the number
of towers. And then we fusion the output of three towers by multiplying
them with the output of the previous FC. The whole process is shown
below:

xLSTM-out = LSTM
(
xfull_sequence

)
, (5)

xFC-out = WFCxLSTM-out + bFC , (6)

xsocket-out = xFC-out

⎡
⎢⎢⎣

ycloseness_tower

yperiod_tower

ytrend_tower

⎤
⎥⎥⎦
. (7)

The xfull_sequence is the input of the whole model, and it will change
as the forecast date changes, so it can serve as a query. When
xfull_sequence go through the LSTM and FC, we will get the xFC-out, which
contains the information about the attention weight of each tower.
Then we will use the xFC-out to control the fusion of ycloseness_tower,
yperiod_tower and ytrend_tower, which represent the outputs of three towers
separately.

4.1.4. Decoder network
Decoder is mainly composed of a simple linear layer, a relu layer,

and a softmax layer, which is unique for each WEEE prediction task

without sharing information. The main purpose of the decoder is to
make each task learn the personality feature of the time series, and
finally obtain the prediction values of each WEEE respectively.

More details of the decoder we can see from the below calculations:
(The xsocket-out flows through two FC and Relu layers, and finally
becomes yOutput)

xRelu-in = FC
(
xsocket-out

)
, (8)

xRelu-out = max
(
0, xRelu-in

)
, (9)

yOutput = Relu
(
FC

(
xRelu-out

))
. (10)

4.2. Multi-time scale aware host task preferred learning model

As for the original MAHOP/st model, when the model is training,
if the parameters are not in the most appropriate range, it is very
likely that some of WEEE prediction tasks will pay too much attention
to some special time series features, monthly synchronization, annual
synchronization or recent trend, and almost ignore others, leading to
the bad performance. At the same time, due to the special processing
of loss, we have made the MAHOP/st model can distinguish the host
task from guest tasks. As a result, compared with undifferentiated MTL,
our network structure seems to have gone to the opposite extreme: ex-
cessive dependence on personality features, lack of effective extraction
of common features, and a tendency to return to STL.

All of the problems mentioned above will lead to the too-high
sensitivity and too-slow training speed of our MAHOP/st model. As
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Fig. 4. The unique structure of MAHOP compared with MAHOP/st.

a result, we imitate the update process from Multi-gate Mixture-of-
Experts to Customized Gate Control and propose our improving model
MAHOP.

On account of the similarity between original MAHOP/st and MA-
HOP, we only show the unique structure of MAHOP in Fig. 4.

As we can see in Fig. 4, based on the MAHOP/st model, MAHOP in-
troduces the full_tower with full-sequence as the input data, containing
all the information of three multi-time scale features: annual synchro-
nization, monthly synchronization, and recent trend. The important
thing we are supposed to recognize is that the output of full_tower is not
directly integrated with the outputs of other towers at the same layer
through sockets. Instead, we achieve the fusion purpose through the
skip connection, which is established through the gate structure, similar
to the socket but only has an FC layer to form the query, and the input
of FC is the output of the previous socket instead of the full_sequence.
The specific structure of the gate is shown in the following formula:

xquery = FC
(
xsocket-out

)
, (11)

xgate-out = xquery

[
xsocket-out
yfull_tower

]
. (12)

We can get to know from the name that yfull_tower refers to the
output of full_tower, and xgate-out refers to the output of the gate. xquery
represents the proportion extracted from yfull_tower and xsocket-out by gate
structure.

4.3. Host-preferred loss and polling host-task learning strategy

In the process of MTL loss summation, we need to make sure that
the loss value of guest tasks only plays an auxiliary role and serves to
better improve the prediction accuracy of the host task. In addition,
we are supposed to achieve fair prediction for all tasks to improve the
accuracy of all WEEE prediction tasks.

To achieve that, we first design the Host-preferred Loss (HPL) to
meet 2 requirements. For one thing, the loss value of guest tasks should
not exceed the loss value of the host task. For another, the loss value
of different guest tasks should be in a state of dynamic balance, which
means that if one of the losses of guest tasks is far beyond than others,
it should attenuate at a minimum speed. Moreover, we put forward the
polling host-task learning strategy, which can make sure that each task
can be the host task once and the guest task many times (while another
task is the host task).

More details of Host-preferred Loss (HPL) are shown below. Firstly,
we will specify 2 variables, X-Y -weigℎt as well as TV -Y -weigℎt. We
stipulate X ∈ {FD,AC,WM}, Y ∈ {FD,AC,WM}, and X ≠ Y , and
the formulation set is as follows:

X-Y -weigℎt = min

(
1,

X-loss
sum (GTKs-loss)

)
×

remain-loss
sum (GTKs-loss)

, (13)

TV -Y -weigℎt = min

(
1,

T V -loss
sum (GTKs-loss)

)
×

sum (remain-loss)
2 × sum (GTKs-loss)

. (14)

From the above formulations, GTKs-loss represents the loss of sep-
arately each guest task, while remain-loss represents the loss of sepa-
rately each guest task except Y-loss. Finally, we get all the mixloss as
follows:

X-mixloss = X-loss + sum (X-Y -weigℎt × Y -loss) , (15)

TV -mixloss = TV -loss + sum (TV -Y -weigℎt × Y -loss) . (16)

4.4. Algorithm process

Algorithm 1 MAHOP Algorithm

Input: temporal features series of the host task (HTK) RHTK ;
temporal features series of guest tasks (GTKs) RGTKs;

Output: return HTK-mixloss;
1: Stack HTKfull-sequence and GTKsfull-sequence to full-sequence;
2: Define time windows: cw, pw, tw;
3: Calculate tower output: nearLSTM-out, montℎLSTM-out, yearLSTM-out,

fullLSTM-out;
4: Get HTK fusion result from socket:

HTKsocket-out = socket

⎛⎜⎜⎝
full-sequence

⎡⎢⎢⎣

nearLSTM-out
montℎLSTM-out
yearLSTM-out

⎤⎥⎥⎦

⎞⎟⎟⎠
;

5: Calculate HTK gate output:

HTKgate-out = gate
(
fullLSTM-out HTKsocket-out

)
;

6: Decode HTK gate-out to output and get corresponding loss:
HTK-loss;

7: while not all GTKs are through calculation do
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Table 1
Datasets description.

Training set Validation set Test set

Data length 273 30 31
Start date 2019–02–01 2019-11-01 2019–12–01
End date 2019–10–31 2019-11-30 2019–12–31
Time sequence year_len:7 month_len:7 near_len:15

8: Get GTKn fusion result from socket:

GTKnsocket-out = socketn

⎛⎜⎜⎝
full-sequence

⎡⎢⎢⎣

nearLSTM-out
montℎLSTM-out
yearLSTM-out

⎤⎥⎥⎦

⎞⎟⎟⎠
;

9: Get GTKn gate output:

GTKngate-out = gate
(
fullLSTM-out GTKnsocket-out

)
;

10: Decode GTKn gate-out to output and get corresponding loss:
GTKn-loss;

11: end while
12: Calculate HTK-mixloss:

HTK-mixloss = HPL
(
HTK-loss GTK1-loss⋯ ⋯GTKn-loss

)
;

13: return HTK-mixloss;

5. Experiment setup

We use the data provided by Aibo green, a commercial recycling
company, which contains the daily returns of 4 kinds of electric appli-
ances within 2 years. We apply our model and the previous MTL as
well as single task learning (STL) methods to these specific RL datasets
and prove that our model has a better effect compared with others. We
will show the details of the datasets, the information on the contrast
models, the measurement of all the methods, and the process of the
experiment as follows.

5.1. Datasets

The original data are presented in the form of orders placed by users
of Aibo green, which are then reformed by us to change into returning
amounts of different types of WEEE. All the RL data we can get from
Aibo green includes 5 types of WEEE, which are respectively fridges
(FD), air conditioners (AC), washing machines (WM), televisions (TV),
and other machines (OM). Unfortunately, the data of OM completely
do not have monthly periodicity and annual periodicity features. More-
over, it is not similar to other WEEE time series, which means that any
method of MTL is not suitable to study the common features between
OM and other WEEE. As a result, we only use the data of the first 4
kinds of electronic machines and show them in Fig. 5.

As we can see in Fig. 5, the data of all types of WEEE have monthly
periodicity, annual periodicity, and near trend features. In addition,
their time series of them are similar to each other, so putting them
together to train the model will be beneficial to the MTL task. We can
find that the 2018 and 2019 return data have almost the same trend in
Fig. 5, but if we want to use this annual periodicity, we have to put the
return data of 2018 in the model to help predict the 2019 return data,
which means that the number of total samples can be up to the length
of one year. Moreover, we also find that the return data of four types
of WEEE in the first month is irregularly and randomly fluctuating, so
the data of the first month is discarded. Finally, we divide the rest data
into 3 parts: training set at the rate of 81%, validation set at the rate of
9.5%, and test set at the rate of 9.5%. More information on the 3 parts
of data is shown in Table 1.

5.2. Baselines

We include other 7 contrast models besides our MAHOP/st and
MAHOP models. The first model is the STL model which is proposed
by Zhang et al. (2023) and has been proven to work so well in this
specific WEEE prediction task, while the next 3 models are classical
methods in the MTL field, and the rest are some improved models
proposed by us to make the comparison.

• MULAN (Zhang et al., 2023): This model is the first one to
introduce multi-timescale windows and attention fusion. As a
result, it will capture the temporal dependence for all the WEEE
about the year period, month period, and near trend.
• MMOE (Ma et al., 2018): After the same four copies of input
data containing annual, monthly, and short-term trend features,
they are respectively transferred to four experts (LSTM networks)
for information fusion, and differentiated features are extracted
through four sockets, and also, each socket serves four experts at
the same time.
• CGC (Tang et al., 2020): Based on the MMOE model, the CGC
adds a set of identical input data as well as an identical expert,
and each socket can only fuse information of its unique single
expert and the newly added expert.
• Asymmetry-MMOE (A-MMOE) (Tang et al., 2020): Based on the
MMOE model, the four categories of electrical appliances are
trained four times respectively. The socket of each task to be
predicted fuses all expert information, but the socket of other
categories of electrical appliances can only use their expert in-
formation.
• Lossfixed-MMOE (L-MMOE): Based on the MMOE model, the four
categories of electrical appliances were trained four times. In the
process of loss summation, the loss value coefficient of each task
to be predicted was 1, and the loss value coefficient of other tasks
was 0.1.
• MAHOP/st (lossfixed): This model adopts the MAHOP/st frame-
work, but replaces the HPL algorithm to calculate the loss to the
simple loss-fixed method which has been introduced in L-MMOE.
• MAHOP/st (gradnorm): This model adopts the MAHOP/st frame-
work, but replaces the HPL algorithm to calculate the loss to
gradnorm, which can make each loss adaptively adjust according
to the current weight.

5.3. Measurement

To calculate the effect of different models, we use 2 evaluations,
which are respectively Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). In addition, we also introduce Average Epoch
Number (AEN) to represent the efficiency of each model (We use epocℎi
to represent the number of epochs of the ith WEEE training). When it
comes to sensitivity, we define two kinds of methods to measure it,
which can better describe the influence of the change of parameters
for the RL prediction task. The first one is called the Border of Worst
Performance and Best Performance (B-WP-BP), and the other is called
the Average Deviation of Performance (ADP). The following formulas
show the calculation process of the above indicators:

RMSE =

√√√√1

n

n∑
i=1

(
xi − x̂i

)2
, (17)

MAE =
1

n

n∑
i=1

||xi − x̂i
||, (18)

AEN =
1

n

n∑
i=1

epocℎi, (19)

B −WP − BP = xmax − xmin x ∈ {RMSE,MAE}, (20)
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Fig. 5. The return data of 4 types of WEEE within 2 years.

ADP =
1

n

n∑
i=1

√
|||xi − xavg

||| x ∈ {RMSE,MAE}. (21)

We can find that B-WP-BP represents the range of model per-
formance changed with parameters, while the ADP shows the aver-
age index of model sensitivity. The design of ADP can achieve two
requirements as follows:

1. When we alter parameters, the greater changes in model effect,
the higher sensitivity.

2. It can minimize the influence of outlier points on the final model
sensitivity, which is also the reason why we introduce the square
root calculation.

5.4. Process

We set up five groups of controlled experiments in total. The first
four experiments are designed to verify and compare the accuracy
and efficiency of different models, while the last experiment is about
sensitivity, in order to show the change of the model sensitivity after
we adjust and improve our model from MAHOP/st to MAHOP.

6. Results and analyses

We compare the performance and efficiency among different models
in the WEEE RL prediction field and also figure out the strengths
and weaknesses of our MAHOP/st model due to the experimental
result. Moreover, we analyze the sensitivity of both our original model
MAHOP/st and our improved model MAHOP, in order to demonstrate
that the adjustment of our initial model indeed solves some weaknesses.

6.1. Overall performance comparison

For the first 4 groups of contrast experiments, we compare the
models which are separately classical MTL models with MULAN, some
present asymmetry MTL methods with MULAN and our MAHOP/st,
variants of the MAHOP/st model without HPL with MULAN and our
MAHOP/st, as well as MAHOP/st model with MAHOP model. The result
of the comparison is shown in Fig. 6. Both RMSE and MAE of TV are far
beyond other WEEE so it is not clear to display all four WEEE data in
one picture at the same time. As a result, we just show FD, AC, and WM
in Fig. 6, and all WEEE indicators, including TV, are shown in Table 2.

Firstly, we compare the MULAN with the current popular multitask
model for experimental results. We find that both the MMOE model and
the CGC model have an obvious feature: they greatly shorten the time
required (equal to AEN) to train to the stable level, but the indicators
of RMSE and MAE are far greater than MULAN. As we all know, the
MTL model itself is good at making full use of the commonalities
among different tasks. For specific tasks researched in this paper, the
data of FD, AC, WM, and TV all have a certain degree of monthly
synchronization, annual synchronization, and recent trend features.
However, the dependence of these four WEEE on 3 time features is
not completely the same. Therefore, simple MTL can indeed learn the
common features of all household appliances in a short period, but due
to the limited ability to learn the special feature of each WEEE, it will
result in poor training results.

Secondly, for all the asymmetry MTL models, the learning effect and
accuracy rate are far better than those of the previous undifferentiated
MTL method, but correspondingly, their AEN exceeds the MULAN
model. The performance of A-MMOE and L-MMOE models only has
little improvement compared with MULAN in some WEEE prediction
tasks, while for other WEEE, the prediction effect is even worse. By
contrast, the improved MAHOP/st model in this paper not only has a
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Fig. 6. Comparison results of the efficiency and the prediction effect of different methods.

much better prediction effect than MULAN for all WEEE but also is the
most efficient one of the three preferential MTL models in terms of AEN
indicators.

After analyzing the third picture, we get the conclusion that no
matter what kind of loss calculation method is adopted, as long as
we use the MAHOP/st framework and the loss algorithm is not equal
to the original method (adding directly), the accuracy of them will
exceed the MULAN model. However, it is still obvious that when
HPL is used, the time for model training is shortened, and the AEN
index decreases, which represents that the efficiency of the MAHOP/st
model is improved. From another aspect, compared with the rest loss
calculation methods, the MAE and RMSE indicators have been greatly
improved.

Finally, the last result shows us that MAHOP performs better for WM
prediction, while MAHOP/st performs better for FD prediction, which
means when it comes to the model effect, MAHOP and MAHOP/st
each have their own merits. On the other hand, we find that the AEN
indicator for MAHOP is 10 epochs less than MAHOP/st, regarded as a
small improvement in efficiency, and the most important superiority of
MAHOP compared with MAHOP/st, the acceptable sensitivity, will be
introduced in Section 6.3.

Upon closely examining the data from MTL models, STL models,
and Ablation models presented in Fig. 6, distinct patterns emerge. As
we transition from MTL models through STL models and onto Ablation
models, there is a discernible trade-off: while efficiency diminishes,
prediction accuracy sees consistent enhancement. Intriguingly, within
the Ablation models category, MAHOP stands out, demonstrating an
unmatched balance of prediction accuracy and operational efficiency.

Several insights can be gleaned from these observations:

• Efficiency vs. Accuracy in MTL and STL models: MTL models
seem to emphasize operational efficiency. However, potential
gradient conflicts across tasks might compromise their predictive
prowess, leading STL models to outperform them in terms of
accuracy.

• The Role of GTKs in Ablation Models: Ablation models, de-
signed to predict for each household appliance distinctly, leverage
GTKs to bolster the primary task key (HTK) in predictive perfor-
mance. The integration of these GTKs requires additional com-
putational resources, elucidating the trade-off between accuracy
and efficiency. Furthermore, the comparative analysis among the
ablation models underscores the prowess of our HPL algorithm.
It not only amplifies predictive accuracy but also streamlines the
learning process.

In the realm of real-world implications, our model stands as a
valuable tool for WEEE prediction, facilitating: (1) Resource Allocation
for Recycling Companies: The heightened accuracy empowers recycling
enterprises to optimize their personnel deployment. This includes deter-
mining the number and qualifications of personnel for specific regions.
(2) Operational Efficiency for Dismantling Companies: The dismantling
entities can effectively allocate their resources, translating into cost
savings and enhanced operational efficiency.

6.2. Strengths of MAHOP

The strengths of our model compared with others are described as
follows:

(1) Our model is the only one to introduce the multi-time scale
features to MTL. For other MTL models, the inputs, as well as
the network structures for different experts, are the same, while
for MAHOP, we input the year series data, month series data,
and near trend data separately in 3 different experts, and the
LSTM structures of the 3 experts are also different due to the
length of data.

(2) We use the special loss processes, the HPL as well as the polling
host-task learning strategy, to stress the importance of the host
task and make the training speed of each task can adjust by
itself. Most of the loss calculation methods do not have these
two functions, except for two algorithms mentioned previously
in this paper, lossfixed and gradnorm. But even for these two
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Table 2
The detailed Comparison of each type WEEE among different methods.

FD AC WM TV

MULAN
AEN 100 100 100 100
MAE 64.92 54.41 68.66 171.41
RMSE 81.33 71.36 84.72 216.84

MMOE
AEN 15 15 15 15
MAE 93.27 83.88 106.67 186.45
RMSE 119.47 102.81 134.3 234.26

CGC
AEN 10 10 10 10
MAE 90.51 88.26 86.27 186.32
RMSE 131.88 121.29 120.96 229.52

A-MMOE
AEN 180 180 180 180
MAE 81.15 77.28 74.94 167.02
RMSE 109.14 99.56 103.07 205.56

L-MMOE
AEN 150 150 150 150
MAE 69.31 58.65 73.01 167.35
RMSE 85.08 78.58 92.24 215.38

MAHOP/st (lossfixed)
AEN 140 140 140 140
MAE 57.13 51.32 64.25 166.24
RMSE 80.22 76.47 85.76 200.09

MAHOP/st (gradnorm)
AEN 135 135 135 135
MAE 59.28 53.39 66.56 171.25
RMSE 75.13 71.24 80.12 203.47

MAHOP/st (HPL)
AEN 130 130 130 130
MAE 49.12 52.33 59.35 162.47
RMSE 64.06 66.75 79.24 195.09

MAHOP
AEN 120 120 120 120
MAE 50.12 46.79 55.32 165.05
RMSE 68.25 68.77 78.12 193.46

methods, they can only achieve one of the two purposes, be-
cause the lossfixed algorithm has fixed parameters for each loss,
without dynamic adjustment, and the gradnorm method cannot
distinguish the host task from guest tasks.

(3) The performance of our model is the best, and far beyond any
other model mentioned in this paper for the WEEE RL prediction
task. MAHOP/st as well as MAHOP both behave better than
other models for all types of WEEE, including FD, AC, WM, and
TV.

(4) We avoid the host task paying too much attention to some
specific time series features, so the sensitivity of our model can
be controlled in an acceptable range. The requirement of the
parameters of our original MAHOP/st, such as the input data
length (IDL) and learning rate (LR), are very strict, which means
that any tiny change to the parameters will lead to significant
deterioration of the model prediction effect due to the pretty
high sensitivity. By contrast, after adding one more sharing
tower, the sensitivity of our final MAHOP is greatly decreased
to a pretty low level.

6.3. Sensitivity analysis

We compared the sensitivity of the two models in four kinds of
WEEE with LR changing from 0.005 to 0.02 (increased in steps of
0.001), and IDL changing from 23 (year_len:5, month_len:5,
near_len:13) to 38 (year_len:10, month_len:10, near_len:18) (increased
in steps of 1 for each sequence). The indicators of TV prediction
performance, RMSE, and MAE fluctuate most significantly and the
model itself is also the most unstable when it is applied to the task
of TV prediction. We only show the comparison between MAHOP/st
and MAHOP. To present the difference between the two models more
obviously, we only select TV for sensitivity display in Fig. 7, by
comparing the trend of RMSE and MAE with the change of parameters
LR and IDL. In addition, the results of all WEEE sensitivity comparisons
with the two models are shown in Table 3.

Table 3
The sensitivity comparison of all WEEE.

FD AD WM TV

MAHOP/st

B-WP-BP
LR

MAE 5.44 7.37 8.33 18.69
RMSE 6.32 10.02 11.49 15.94

IDL
MAE 5.2 7.15 9.28 16.62
RMSE 5.98 11.33 13.74 18.38

ADP

LR
MAE 1.11 1.08 1.32 1.74
RMSE 1.23 1.21 1.67 1.91

IDL
MAE 1.06 1.03 1.3 1.87
RMSE 1.2 1.17 1.72 2.03

MAHOP

B-WP-BP
LR

MAE 1.67 2.13 3.24 2.27
RMSE 3.58 7.41 6.38 5.19

IDL
MAE 2.64 3.62 4.27 4.33
RMSE 5.28 6.88 7.35 7.12

ADP

LR
MAE 0.41 0.49 0.61 0.75
RMSE 0.66 0.83 0.88 1.15

IDL
MAE 0.58 0.71 0.96 1.03
RMSE 0.75 0.94 1.11 1.22

In Fig. 7, we find that the sensitivity of MAHOP is much lower than
MAHOP/st for both LR and IDL, which corresponds to the purpose we
design the MAHOP. As a result, after the improvement of our original
model, MAHOP will perform better when we apply the model to predict
the amount of waste household appliances for recycling. Because it has
stronger robustness to help resist the interference of external factors’
fluctuations.

7. Conclusion

In this paper, we first introduce the background of WEEE and
RL, leading to the inference that the prediction of all types of WEEE
is a very important part of the RL field. Then we briefly present
some classical STL models, which have been proven to be effective
for time series prediction tasks. However, through the analysis of the
similarities among different WEEE time sequence data, we find that
the STL methods cannot perform well in our tasks. As a result, we
turn to research the MTL methods, but after investigating carefully,
we find that existing MTL models never consider the multi-time scale
features. Moreover, these models pay more attention to efficiency and
total performance than the prediction accuracy of specific each WEEE,
which is the opposite of our task.

In order to improve the effectiveness of all the WEEE prediction
tasks at the same time, we create a MAHOP model inspired by the
Multi-gate Mixture-of-Experts model, replacing the original experts
with the tower structures, which can accept input of various shapes and
have networks (LSTM) of different lengths. In addition, we also use the
HPL algorithm to make the model have different preferences for the
host task as well as the guest tasks, and the polling host-task learning
strategy to achieve fair prediction for all tasks. The HPL algorithm
along with the polling host-task learning strategy enables the model to
focus on improving the prediction accuracy of one kind of WEEE every
time and repeat it many times until the performance of prediction tasks
of all types of WEEE can be improved. On account of the high sensitivity
of our original MAHOP/st model, we add one more sharing tower, and
get our final MAHOP, to fix this problem.

Applying our model to solve the prediction tasks in this paper, we
design four groups of contrast experiments to compare the efficiency
and effect of different models and one more contrast experiment to
analyze the sensitivity of MAHOP/st and MAHOP models. Eventually,
we get the conclusion that our final model, MAHOP, has a great
improvement of effect among all the WEEE prediction tasks, with a
little more time cost, compared with the rest of MTL and STL methods
and performs well slightly for efficiency and great for sensitivity.

This research contributes a novel model to the domain with note-
worthy strengths, but we recognize certain areas for enhancement.
Notably: (1) Our model demonstrates a commendable performance,
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Fig. 7. Comparison of sensitivity between MAHOP/st and MAHOP.

surpassing both MTL and STL methodologies in accuracy. However, the
efficiency front presents a scope for optimization. (2) While specific
household electrical appliances like FD, AD, WM, and TV showcase
congruent time series patterns, our model currently does not cater to
integrating appliances devoid of such resemblances. This limitation
delineates an avenue for further research and enhancement. (3) The
dataset’s sparsity, particularly in some provinces and specific recycling
points, restrains our model’s capability to precisely predict recycling
volumes at the provincial or individual recycling point level. Future
iterations may benefit from the integration of transfer learning to
mitigate this limitation.
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